Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital eng...Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.展开更多
Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
The presence of increased memory and computational power in imaging sensor networks attracts researchers to exploit image processing algorithms on distributed memory and computational power. In this paper, a typical p...The presence of increased memory and computational power in imaging sensor networks attracts researchers to exploit image processing algorithms on distributed memory and computational power. In this paper, a typical perimeter is investigated with a number of sensors placed to form an image sensor network for the purpose of content based distributed image search. Image search algorithm is used to enable distributed content based image search within each sensor node. The energy model is presented to calculate energy efficiency for various cases of image search and transmission. The simulations are carried out based on consideration of continuous monitoring or event driven activity on the perimeter. The simulation setups consider distributed image processing on sensor nodes and results show that energy saving is significant if search algorithms are embedded in image sensor nodes and image processing is distributed across sensor nodes. The tradeoff between sensor life time, distributed image search and network deployed cost is also investigated.展开更多
This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of se...This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of sensor observations and a quasi best linear unbiased estimate is constructed to estimate the source parameter. Simulations show that the estimation scheme achieves a better power and spectral efficiency than the previous scheme.展开更多
文摘Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.
文摘The presence of increased memory and computational power in imaging sensor networks attracts researchers to exploit image processing algorithms on distributed memory and computational power. In this paper, a typical perimeter is investigated with a number of sensors placed to form an image sensor network for the purpose of content based distributed image search. Image search algorithm is used to enable distributed content based image search within each sensor node. The energy model is presented to calculate energy efficiency for various cases of image search and transmission. The simulations are carried out based on consideration of continuous monitoring or event driven activity on the perimeter. The simulation setups consider distributed image processing on sensor nodes and results show that energy saving is significant if search algorithms are embedded in image sensor nodes and image processing is distributed across sensor nodes. The tradeoff between sensor life time, distributed image search and network deployed cost is also investigated.
文摘This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of sensor observations and a quasi best linear unbiased estimate is constructed to estimate the source parameter. Simulations show that the estimation scheme achieves a better power and spectral efficiency than the previous scheme.