For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favo...For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with oxylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.展开更多
Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assis...Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.展开更多
TEM study was made to explore the mechanism of the strain-age hardening of initially-dis- ordered (Co_(78)Fe_(22))_3V,which was found to be attributed to the formation of a special disloca- tion-stacking fault configu...TEM study was made to explore the mechanism of the strain-age hardening of initially-dis- ordered (Co_(78)Fe_(22))_3V,which was found to be attributed to the formation of a special disloca- tion-stacking fault configuration in company with disorder-order transformation-disloca- tions extended to stacking faults on{111}planes and got connected with each other through partial dislocation reaction at intersections of{111}planes,leading to dense networks with cells bounded by stacking fault tetrahedrons.The results also indicated that ordered (Co_(78)Fe_(22))_3V has very low stacking fault energy on{111}planes and relative high and isotropie antiphase boundary energy,which implies that it is most likely to be Lomer-Cottrell locks,not Kear-Wilsdof locks,that are responsible for the high strength at high temperatures of this alloy.展开更多
The crowding agent induced phase transition of amphiphilic block copolymers in solution was explicitly considered. The influence of the size and the volume fraction of the crowding agent on the phase separation of amp...The crowding agent induced phase transition of amphiphilic block copolymers in solution was explicitly considered. The influence of the size and the volume fraction of the crowding agent on the phase separation of ampbiphilic diblock copolymers is investigated by using self-consistent field theory (SCFT) method. The concentration of the disorder to order transition of the block copolymer decreases when the size of the crowding agent is larger than that of the solvent. The higher volume fraction of the crowding agent will induce the transition of the block copolymer from disorder to order state at a lower concentration. The relation between the size and the volume fraction of the crowding agent is elucidated. When the size of the crowding agent is larger, its volume fraction of the disorder to order transition of the block copolymer will be lower. The conformation of the crowding agent considered as a polymer chain is also studied and compared.展开更多
Tuberculosis drug resistance continues to threaten global health but the underline molecular mechanisms are not clear.Ethambutol(EMB),one of the well-known first-line drugs in tuberculosis treatment is,unfortunately,n...Tuberculosis drug resistance continues to threaten global health but the underline molecular mechanisms are not clear.Ethambutol(EMB),one of the well-known first-line drugs in tuberculosis treatment is,unfortunately,not free from drug resistance problems.Genomic studies have shown that some genetic mutations in Mycobacterium tuberculosis(Mtb)EmbR,and EmbC/A/B genes cause EMB resistance.EmbR-PknH pair controls embC/A/B operon,which encodes EmbC/A/B genes,and EMB interacts with EmbA/B proteins.However,the EmbR binding site on PknH was unknown.We conducted molecular simulation on the EmbR-peptides binding structures and discovered phosphorylated PknH 273-280(N′-HEALS^(P)DPD-C′)makesβstrand with the EmbR FHA domain,asβ-MoRF(MoRF;molecular recognition feature)does at its binding site.Hydrogen bond number analysis also supported the peptides’β-MoRF forming activity at the EmbR FHA domain.Also,we discovered that previously known phosphorylation residues might have their chronological order according to the phosphorylation status.The discovery validated that Mtb PknH 273-280(N′-HEALSDPD-C′)has reliable EmbR binding affinity.This approach is revolutionary in the computer-aided drug discovery field,because it is the first trial to discover the protein-protein interaction site,and find binding partner in nature from this site.展开更多
All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature)....All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature). The paper considers ways of disordering intermetallic phases, in relation to the ordering energy and diffusivities, and some properties of partially ordered intermetallic phases (including mechanical properties) The kinetics of re-ordering of disordered starting material will be examined,including sluggishly ordering phases (which can be aided by concurrent irradiation). The circumstances under which a partially disordered intermetallic phase may transform into an amorphous form will be outlined.展开更多
The strain-induced microstructural changes of Fe3Al-based alloys during room temperature deformation and high temperature creep were investigated. The results illustrated the strain-induced disor dering occured during...The strain-induced microstructural changes of Fe3Al-based alloys during room temperature deformation and high temperature creep were investigated. The results illustrated the strain-induced disor dering occured during room temperature deformation. Creep strain could induced two opposite processes, which are strain-induced disordering and creep recovery-induced reordering. These two opposite creep induced processes during creep result in reducing the influence of primary microstructure on the rupture life.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51890871, 91833306, and 51573185)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020300)
文摘For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with oxylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.
基金financially supported by the National Natural Science Foundation of China(Grant nos.51871045,52071070,and 51690161)the Fundamental Research Funds for the Central Universities(Grant no.N2017003)the Doctoral Start-up Foundation of Liaoning Province(Grant no.2019-BS-116)。
文摘Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.
文摘TEM study was made to explore the mechanism of the strain-age hardening of initially-dis- ordered (Co_(78)Fe_(22))_3V,which was found to be attributed to the formation of a special disloca- tion-stacking fault configuration in company with disorder-order transformation-disloca- tions extended to stacking faults on{111}planes and got connected with each other through partial dislocation reaction at intersections of{111}planes,leading to dense networks with cells bounded by stacking fault tetrahedrons.The results also indicated that ordered (Co_(78)Fe_(22))_3V has very low stacking fault energy on{111}planes and relative high and isotropie antiphase boundary energy,which implies that it is most likely to be Lomer-Cottrell locks,not Kear-Wilsdof locks,that are responsible for the high strength at high temperatures of this alloy.
基金financially supported by the National Natural Science Foundations of China(Nos.20874046,21074053 and 51133002)National Basic Research Program of China(Nos.2010CB923303,2012CB821503)Fundamental Research Funds for the Central Universities(No.1095020515)
文摘The crowding agent induced phase transition of amphiphilic block copolymers in solution was explicitly considered. The influence of the size and the volume fraction of the crowding agent on the phase separation of ampbiphilic diblock copolymers is investigated by using self-consistent field theory (SCFT) method. The concentration of the disorder to order transition of the block copolymer decreases when the size of the crowding agent is larger than that of the solvent. The higher volume fraction of the crowding agent will induce the transition of the block copolymer from disorder to order state at a lower concentration. The relation between the size and the volume fraction of the crowding agent is elucidated. When the size of the crowding agent is larger, its volume fraction of the disorder to order transition of the block copolymer will be lower. The conformation of the crowding agent considered as a polymer chain is also studied and compared.
基金This work was supported by the National Institutes of Health Grant No.7R01GM118467-05the National Natural Science Foundation of China(31720103901).
文摘Tuberculosis drug resistance continues to threaten global health but the underline molecular mechanisms are not clear.Ethambutol(EMB),one of the well-known first-line drugs in tuberculosis treatment is,unfortunately,not free from drug resistance problems.Genomic studies have shown that some genetic mutations in Mycobacterium tuberculosis(Mtb)EmbR,and EmbC/A/B genes cause EMB resistance.EmbR-PknH pair controls embC/A/B operon,which encodes EmbC/A/B genes,and EMB interacts with EmbA/B proteins.However,the EmbR binding site on PknH was unknown.We conducted molecular simulation on the EmbR-peptides binding structures and discovered phosphorylated PknH 273-280(N′-HEALS^(P)DPD-C′)makesβstrand with the EmbR FHA domain,asβ-MoRF(MoRF;molecular recognition feature)does at its binding site.Hydrogen bond number analysis also supported the peptides’β-MoRF forming activity at the EmbR FHA domain.Also,we discovered that previously known phosphorylation residues might have their chronological order according to the phosphorylation status.The discovery validated that Mtb PknH 273-280(N′-HEALSDPD-C′)has reliable EmbR binding affinity.This approach is revolutionary in the computer-aided drug discovery field,because it is the first trial to discover the protein-protein interaction site,and find binding partner in nature from this site.
文摘All intermetallic phases have a tendency to atomic long-range ordering, according to the ordering energy, they may be permanently ordered (up to the melting-point) or reversibly ordered (up to a critical temperature). The paper considers ways of disordering intermetallic phases, in relation to the ordering energy and diffusivities, and some properties of partially ordered intermetallic phases (including mechanical properties) The kinetics of re-ordering of disordered starting material will be examined,including sluggishly ordering phases (which can be aided by concurrent irradiation). The circumstances under which a partially disordered intermetallic phase may transform into an amorphous form will be outlined.
文摘The strain-induced microstructural changes of Fe3Al-based alloys during room temperature deformation and high temperature creep were investigated. The results illustrated the strain-induced disor dering occured during room temperature deformation. Creep strain could induced two opposite processes, which are strain-induced disordering and creep recovery-induced reordering. These two opposite creep induced processes during creep result in reducing the influence of primary microstructure on the rupture life.