针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征...针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征之间的关系函数,即首先计算特征值的权值因子,评估特征值的显著度,进而对每个特征值予以权值;然后利用加权特征和代理模型建立预测模型;最后采用预测模型对未知样本进行识别诊断。对滚动轴承实测数据的分析结果表明,ADMFW可以有效地对滚动轴承的工作状态和故障类型进行识别。展开更多
文摘针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征之间的关系函数,即首先计算特征值的权值因子,评估特征值的显著度,进而对每个特征值予以权值;然后利用加权特征和代理模型建立预测模型;最后采用预测模型对未知样本进行识别诊断。对滚动轴承实测数据的分析结果表明,ADMFW可以有效地对滚动轴承的工作状态和故障类型进行识别。