期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Three Kinds of Discrete Formulae for the Caputo Fractional Derivative
1
作者 Zhengnan Dong Enyu Fan +1 位作者 Ao Shen Yuhao Su 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1446-1468,共23页
In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The trunc... In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples. 展开更多
关键词 Caputo fractional derivative Modified L1 discretisation L2 discretisation L2C discretisation Truncation error
下载PDF
On the Fractional Derivatives with an Exponential Kernel
2
作者 Enyu Fan Jingshu Wu Shaoying Zeng 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1655-1673,共19页
The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional d... The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional derivatives are proposed,including the Fourier transform and the Laplace transform.Then,the L2 discretisation for the exponential Caputo derivative with a∈(1,2)is established.The estimation of the truncation error and the properties of the coefficients are discussed.In addition,a numerical example is given to verify the correctness of the derived L2 discrete formula. 展开更多
关键词 Exponential fractional derivative Integral transform L2 discretisation Truncation error
下载PDF
曲线约束Delaunay三角剖分及在地形构建中的应用 被引量:1
3
作者 孙劲光 周勃 《计算机应用与软件》 CSCD 2015年第12期25-28,41,共5页
针对采用约束Delaunay三角剖分算法构建地形时如何确保地形数据中的曲线约束条件在剖分结果中存在的问题,提出提取能够反映地形自身几何特征的特征点的方法对约束曲线进行直线段逼近,并对允许逼近误差的取值给予分析和验证。实现了使用... 针对采用约束Delaunay三角剖分算法构建地形时如何确保地形数据中的曲线约束条件在剖分结果中存在的问题,提出提取能够反映地形自身几何特征的特征点的方法对约束曲线进行直线段逼近,并对允许逼近误差的取值给予分析和验证。实现了使用较少的点对约束曲线进行最大程度逼近;在解决约束直线段不在Delaunay三角剖分中的问题时,提出在原约束曲线上进行加特征点细分的方法;针对地形数据量大构网时间长的问题,改进Delaunay三角网格生成算法。实验结果表明算法能够确保约束曲线在网格中存在,提高了对原曲线的逼近程度且提高了运算效率。算法可以实现对复杂区域的正确处理。 展开更多
关键词 地形重构 特征点提取 曲线约束Delaunay 离散误差 曲线离散化 Delaunay三角网格
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部