In order to reduce the intrinsic interference of the filter bank multicarrier-quadrature amplitude modulation(FBMC-QAM)system,a novel filter optimization scheme based on discrete prolate spheroidal sequences(DPSS)is p...In order to reduce the intrinsic interference of the filter bank multicarrier-quadrature amplitude modulation(FBMC-QAM)system,a novel filter optimization scheme based on discrete prolate spheroidal sequences(DPSS)is proposed.Firstly,a prototype filter function based on DPSS is designed,since the eigenvalue can be used as an indicator of the energy concentration of DPSS,so a threshold is set,and the sequence with the most concentrated energy is selected under the threshold,that is,the sequence with the eigenvalue higher than the threshold,and the prototype filter function is rewritten as a weighted sum function of multiple eigenvectors.Under the energy constraints of the filter,the relationship between the eigenvectors and the intrinsic interference function is established,and the function problem is transformed into an optimization problem for the weighted coefficients.Through the interior point method,the most suitable weight is found to obtain the minimum intrinsic interference result.Theoretical analysis and simulation results show that compared with the prototype filters such as Type1 and CaseC,the DPSS filter applying the proposed optimization algorithm can effectively suppress the intrinsic interference of the system and obtain a better bit error rate(BER)performance.展开更多
Corrected explicit-implicit domain decomposition(CEIDD) algorithms are studied for parallel approximation of semilinear parabolic problems on distributed memory processors. It is natural to divide the spatial domain i...Corrected explicit-implicit domain decomposition(CEIDD) algorithms are studied for parallel approximation of semilinear parabolic problems on distributed memory processors. It is natural to divide the spatial domain into some smaller parallel strips and cells using the simplest straightline interface(SI) . By using the Leray-Schauder fixed-point theorem and the discrete energy method,it is shown that the resulting CEIDD-SI algorithm is uniquely solvable,unconditionally stable and convergent. The CEIDD-SI method always suffers from the globalization of data communication when interior boundaries cross into each other inside the domain. To overcome this disadvantage,a composite interface(CI) that consists of straight segments and zigzag fractions is suggested. The corresponding CEIDD-CI algorithm is proven to be solvable,stable and convergent. Numerical experiments are presented to support the theoretical results.展开更多
We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
We present a novel approach for dealing with optimal approximate merging of two adjacent Bezier eurves with G^2-continuity. Instead of moving the control points, we minimize the distance between the original curves an...We present a novel approach for dealing with optimal approximate merging of two adjacent Bezier eurves with G^2-continuity. Instead of moving the control points, we minimize the distance between the original curves and the merged curve by taking advantage of matrix representation of Bezier curve's discrete structure, where the approximation error is measured by L2-norm. We use geometric information about the curves to generate the merged curve, and the approximation error is smaller. We can obtain control points of the merged curve regardless of the degrees of the two original curves. We also discuss the merged curve with point constraints. Numerical examples are provided to demonstrate the effectiveness of our algorithms.展开更多
Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iter...Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.展开更多
基金the National Natural Science Foundation of China(No.61601296,61201244)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43)。
文摘In order to reduce the intrinsic interference of the filter bank multicarrier-quadrature amplitude modulation(FBMC-QAM)system,a novel filter optimization scheme based on discrete prolate spheroidal sequences(DPSS)is proposed.Firstly,a prototype filter function based on DPSS is designed,since the eigenvalue can be used as an indicator of the energy concentration of DPSS,so a threshold is set,and the sequence with the most concentrated energy is selected under the threshold,that is,the sequence with the eigenvalue higher than the threshold,and the prototype filter function is rewritten as a weighted sum function of multiple eigenvectors.Under the energy constraints of the filter,the relationship between the eigenvectors and the intrinsic interference function is established,and the function problem is transformed into an optimization problem for the weighted coefficients.Through the interior point method,the most suitable weight is found to obtain the minimum intrinsic interference result.Theoretical analysis and simulation results show that compared with the prototype filters such as Type1 and CaseC,the DPSS filter applying the proposed optimization algorithm can effectively suppress the intrinsic interference of the system and obtain a better bit error rate(BER)performance.
基金supported by National Natural Science Foundation of China (Grant No. 10871044)
文摘Corrected explicit-implicit domain decomposition(CEIDD) algorithms are studied for parallel approximation of semilinear parabolic problems on distributed memory processors. It is natural to divide the spatial domain into some smaller parallel strips and cells using the simplest straightline interface(SI) . By using the Leray-Schauder fixed-point theorem and the discrete energy method,it is shown that the resulting CEIDD-SI algorithm is uniquely solvable,unconditionally stable and convergent. The CEIDD-SI method always suffers from the globalization of data communication when interior boundaries cross into each other inside the domain. To overcome this disadvantage,a composite interface(CI) that consists of straight segments and zigzag fractions is suggested. The corresponding CEIDD-CI algorithm is proven to be solvable,stable and convergent. Numerical experiments are presented to support the theoretical results.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
基金supported by the National Natural Science Foundation of China (No. 60773179)the National Basic Research Program(973) of China (No. G2004CB318000)
文摘We present a novel approach for dealing with optimal approximate merging of two adjacent Bezier eurves with G^2-continuity. Instead of moving the control points, we minimize the distance between the original curves and the merged curve by taking advantage of matrix representation of Bezier curve's discrete structure, where the approximation error is measured by L2-norm. We use geometric information about the curves to generate the merged curve, and the approximation error is smaller. We can obtain control points of the merged curve regardless of the degrees of the two original curves. We also discuss the merged curve with point constraints. Numerical examples are provided to demonstrate the effectiveness of our algorithms.
基金funded by the NSFC under Grant Nos.61803279,71471091,62003231 and 51874205in part by the Qing Lan Project of Jiangsu,in part by the China Postdoctoral Science Foundation under Grant Nos.2020M671596 and 2021M692369+2 种基金in part by the Suzhou Science and Technology Development Plan Project(Key Industry Technology Innovation)under Grant No.SYG202114in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20200989Postdoctoral Research Funding Program of Jiangsu Province.
文摘Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.