Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream p...Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.展开更多
提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由...提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由于DPM具有形似于Polya urn的采样特性,能够很方便地对噪声数据进行聚类,并导出噪声的后验分布。仿真结果显示,噪声数据似然的Metropolis-Hastings(M-H)的采样算法比点估计的系统分析算法精度高。展开更多
针对线性动态系统在复杂噪声环境中的不确定性的传递问题,提出了用块采样推理方法逼近状态和噪声的后验分布.该方法在时序采样中,样本在基于条件独立性准则下可一次性更新,这通常比单独更新来得简单和有效.通过引入Dirichlet过程混合模...针对线性动态系统在复杂噪声环境中的不确定性的传递问题,提出了用块采样推理方法逼近状态和噪声的后验分布.该方法在时序采样中,样本在基于条件独立性准则下可一次性更新,这通常比单独更新来得简单和有效.通过引入Dirichlet过程混合模型(Dirichlet Process Mixture,DPM),能够较方便地获得马尔科夫链式样本.结合卡尔曼平滑技术,使块采样算法能够在分布空间逼近基础上取得较高的精度.仿真结果显示,块采样平滑算法具有较好的效果.展开更多
识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚...识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准.展开更多
自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异...自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异常标签共现和特征局部相关(Label Co-occurrence and Feature’s local Pertinence,LCFP)的心电异常识别方法。首先,根据标签共现性和特征局部相关性,为标签构建包含宏特征和微特征的联合特征空间。宏特征采用狄利克雷过程混合模型聚类构建,以区分不同的共现标签集;微特征是原始特征空间的一个子集,用于区分共现标签集中的各个标签。进而,在联合特征空间为每个异常训练一个一对多(One-Versus-All)的概率分类器。其次,为充分利用异常的关联,提出在概率分类器排序基础上区分相关和非相关标签,采用Beta分布自适应地学习锚阈值和相关度阈值,以确定实例的相关标签集。LCFP是一种检测多种心电异常的通用方法,提高了心电异常识别的精度。在两个真实数据集上,F1指标分别提高了4%和22.4%,验证了所提方法的有效性。展开更多
文摘Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.
文摘提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由于DPM具有形似于Polya urn的采样特性,能够很方便地对噪声数据进行聚类,并导出噪声的后验分布。仿真结果显示,噪声数据似然的Metropolis-Hastings(M-H)的采样算法比点估计的系统分析算法精度高。
文摘针对线性动态系统在复杂噪声环境中的不确定性的传递问题,提出了用块采样推理方法逼近状态和噪声的后验分布.该方法在时序采样中,样本在基于条件独立性准则下可一次性更新,这通常比单独更新来得简单和有效.通过引入Dirichlet过程混合模型(Dirichlet Process Mixture,DPM),能够较方便地获得马尔科夫链式样本.结合卡尔曼平滑技术,使块采样算法能够在分布空间逼近基础上取得较高的精度.仿真结果显示,块采样平滑算法具有较好的效果.
文摘识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准.
文摘自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异常标签共现和特征局部相关(Label Co-occurrence and Feature’s local Pertinence,LCFP)的心电异常识别方法。首先,根据标签共现性和特征局部相关性,为标签构建包含宏特征和微特征的联合特征空间。宏特征采用狄利克雷过程混合模型聚类构建,以区分不同的共现标签集;微特征是原始特征空间的一个子集,用于区分共现标签集中的各个标签。进而,在联合特征空间为每个异常训练一个一对多(One-Versus-All)的概率分类器。其次,为充分利用异常的关联,提出在概率分类器排序基础上区分相关和非相关标签,采用Beta分布自适应地学习锚阈值和相关度阈值,以确定实例的相关标签集。LCFP是一种检测多种心电异常的通用方法,提高了心电异常识别的精度。在两个真实数据集上,F1指标分别提高了4%和22.4%,验证了所提方法的有效性。