This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes...This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.展开更多
We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation pri...We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.展开更多
The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the pe...The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.展开更多
Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time...Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examineS. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.展开更多
This article examines the off season rainfall in northern coast Tanzania(NCT)including Zanzibar which occurred in January and February 2020(JF).Like the JF rainfalls of 2001,2004,2010,2016 and 2018,the JF(2020)rainfal...This article examines the off season rainfall in northern coast Tanzania(NCT)including Zanzibar which occurred in January and February 2020(JF).Like the JF rainfalls of 2001,2004,2010,2016 and 2018,the JF(2020)rainfall was more unique in damages including loss of lives,properties and infrastructures.The study used the NCEP/NCAR reanalysis data to examine the cause of uniqueness of JF rainfall in 2001,2004,2010,2016,2018 and 2020 over NCT and Zanzibar.These datasets include monthly mean u,v wind at 850,700,500,and 200 mb;SSTs,mean sea level pressure(MSLP)anomalies,Dipole Mode Index(DMI),and monthly rainfall from NCT and Zanzibar stations.Datasets were processed and calculated into long term,seasonal,and monthly averages,indeed,Precipitation Index(PI)was calculated.Correlation analysis between the rainfall(December to January),SST,DMI and 850 mb wind vectors;and long-term percentage contribution of investigated parameters was calculated.Results revealed significant positive and negative correlations between JF rainfall,SSTs and DMI.Moreover,JFs of 2004 and 2016 had higher rainfalls of 443 mm with percentage contribution of up to 406%,while January and February,2020 had the highest of 269.1 and 101.1mm in Zanzibar and 295 and 146.1 mm over and NCT areas,with highest January long-term rainfall contribution of 356%in Zanzibar and 526%over NCT.The DJF(2019/20)had the highest rainfall record of 649.5 mm in Zanzibar contributing up to 286%,while JF 2000 rainfall had a good spatial and temporal distribution over most NCT areas.JF,2020 rainfall had impacts of more than 20 people died in Lindi and several infrastructures including Kiyegeya Bridge in Morogoro were damaged.Conclusively,more research works on understanding the dynamics of wet and dry JF seasons should be conducted.展开更多
The CBPM is a kind of monitor which is used for the measurement of beam transverse position. It is becoming increasingly popular due to its high potential in resolution performance. In theory, the resolution can reach...The CBPM is a kind of monitor which is used for the measurement of beam transverse position. It is becoming increasingly popular due to its high potential in resolution performance. In theory, the resolution can reach about 1 nanometer. In this paper, a rectangular CBPM is designed for it has better X-Y isolation than a cylindrical one. It has been simulated and measured, and the results agree with each other very well. The procedures and results for the simulation and the cold test will be shown later and it will be proved that this is a reliable method for the CBPM design.展开更多
Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). C...Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). Correlation analysis of the spatial variability regarding monthly sea level pressure, surface air tempera- ture, and sea surface temperature anomalies with IOD index suggests that IOD signal exists in southern high latitudes. The correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis on the strongest correlation areas with IOD index shows that IOD in the tropical Indian Ocean responses to the southern high latitude climate almost instantaneously. It is proposed in the present paper that this connection is realized through atmospheric propagation rather than through oceanic one.展开更多
The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS...The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper.展开更多
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variabil...Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphere- ocean coupled model, we conducted two experiments (CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature (SST) modes to the occurrence of E1 Nino events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of E1 Nino events during the boreal autumn in an E1 Nino developing year. However, it weakens E1 Nino events or even promotes cold phase conversions in an E1 Nino decaying year. Therefore, the en- tire period of the E1 Nino is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the E1 Nino developing years, the positive Indian Ocean Dipole (IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer E1 Nino event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin (IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Nino decaying years. As a result, the E1 Nino event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the E1 Nino during the developing years, whereas the IOB mode affects the E1 Nino during the decaying years.展开更多
Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model. The dipole moment surfaces of NH...Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model. The dipole moment surfaces of NH3 and SbH3 are calculated with the density functional theory and at the correlated MP2 level, respectively. The calculated band intensities are in good agreement with the available experimental data. The contribution to the band intensities from the different terms in the polynomial expansion of the dipole moments of four group V hydrides (NH3, PH3, AsH3 and SbH3) are discussed. It is concluded that the breakdown of the bond dipole approximation must be considered. The intensity “borrowing” effect due to the wave function mixing among the stretching vibrational states is found to be less significant for the molecules that reach the local mode limit.展开更多
Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and Nation...Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and National Oceanic and Atmospheric Administration sea surface temperature data from 1981 to 2010,spatiotemporal distributions of NIO TC activity and relationships with local sea surface temperature(SST)were studied with statistical diagnosis methods.Results of empirical orthogonal function(EOF)analysis of NIO TC occurrence frequency show that the EOF1 mode,which accounts for 16%of total variance,consistently represents variations of TC occurrence frequency over the whole NIO basin.However,spatial dis- tributions of EOF1 mode are not uniform,mainly indicating variations of westward-moving TCs in the Bay of Bengal.The prevailing TC activity variation mode oscillates significantly on a quasi-5 year interannual time scale.NIO TC activity is notably influenced by the Indian Ocean dipole(IOD)mode.When the Indian Ocean is in a positive(negative)phase of the IOD, NIO SST anomalies are warm in the west(east)and cold in the east(west),which can weaken(strengthen)convection over the Bay of Bengal and eastern Arabian Sea,and cause anticyclonic(cyclonic)atmospheric circulation anomalies at low levels. This results in less(more)TC genesis and reduced(increased)opportunities for TC occurrence in the NIO.In addition,positive(negative)IOD events may strengthen(weaken)westerly steering flow over the Bay of Bengal,which further leads to fewer(more)westward-moving TCs which appear in regions west of 90°E in that bay.展开更多
Vibrational mode in a two-dimensional dust monolayer is investigated by considering the finite size of dust grains. Each dust grain is assumed to be a negative point charge and a dipole moment due to the inhomogeneous...Vibrational mode in a two-dimensional dust monolayer is investigated by considering the finite size of dust grains. Each dust grain is assumed to be a negative point charge and a dipole moment due to the inhomogeneous charge distribution on its surface. The dispersion relation of the vibrational mode is derived. Both the self-excited and externally excited cases are discussed. It is shown that the mode is sensitive to the direction of the dipole moment.展开更多
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structure...The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.展开更多
The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International ...The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.展开更多
文摘This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.
文摘We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102)the NSFC (Grant Nos. 41375094 and 41406028)+1 种基金the "973" project (Grant No. 2012CB956000)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)
文摘The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.
基金This work is supported by the National Natural Science Foundation of China(No.40506011)
文摘Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examineS. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.
文摘This article examines the off season rainfall in northern coast Tanzania(NCT)including Zanzibar which occurred in January and February 2020(JF).Like the JF rainfalls of 2001,2004,2010,2016 and 2018,the JF(2020)rainfall was more unique in damages including loss of lives,properties and infrastructures.The study used the NCEP/NCAR reanalysis data to examine the cause of uniqueness of JF rainfall in 2001,2004,2010,2016,2018 and 2020 over NCT and Zanzibar.These datasets include monthly mean u,v wind at 850,700,500,and 200 mb;SSTs,mean sea level pressure(MSLP)anomalies,Dipole Mode Index(DMI),and monthly rainfall from NCT and Zanzibar stations.Datasets were processed and calculated into long term,seasonal,and monthly averages,indeed,Precipitation Index(PI)was calculated.Correlation analysis between the rainfall(December to January),SST,DMI and 850 mb wind vectors;and long-term percentage contribution of investigated parameters was calculated.Results revealed significant positive and negative correlations between JF rainfall,SSTs and DMI.Moreover,JFs of 2004 and 2016 had higher rainfalls of 443 mm with percentage contribution of up to 406%,while January and February,2020 had the highest of 269.1 and 101.1mm in Zanzibar and 295 and 146.1 mm over and NCT areas,with highest January long-term rainfall contribution of 356%in Zanzibar and 526%over NCT.The DJF(2019/20)had the highest rainfall record of 649.5 mm in Zanzibar contributing up to 286%,while JF 2000 rainfall had a good spatial and temporal distribution over most NCT areas.JF,2020 rainfall had impacts of more than 20 people died in Lindi and several infrastructures including Kiyegeya Bridge in Morogoro were damaged.Conclusively,more research works on understanding the dynamics of wet and dry JF seasons should be conducted.
文摘The CBPM is a kind of monitor which is used for the measurement of beam transverse position. It is becoming increasingly popular due to its high potential in resolution performance. In theory, the resolution can reach about 1 nanometer. In this paper, a rectangular CBPM is designed for it has better X-Y isolation than a cylindrical one. It has been simulated and measured, and the results agree with each other very well. The procedures and results for the simulation and the cold test will be shown later and it will be proved that this is a reliable method for the CBPM design.
文摘Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). Correlation analysis of the spatial variability regarding monthly sea level pressure, surface air tempera- ture, and sea surface temperature anomalies with IOD index suggests that IOD signal exists in southern high latitudes. The correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis on the strongest correlation areas with IOD index shows that IOD in the tropical Indian Ocean responses to the southern high latitude climate almost instantaneously. It is proposed in the present paper that this connection is realized through atmospheric propagation rather than through oceanic one.
文摘The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB428504,2012CB956002)the National Natural Science Foundation of China(Grant Nos.40906005,41105059,41065005,GYHY2011-06017,GYHY201306027)+1 种基金the National Key Technologies R&D Program of China(Grant No.2009BAC51B01)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphere- ocean coupled model, we conducted two experiments (CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature (SST) modes to the occurrence of E1 Nino events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of E1 Nino events during the boreal autumn in an E1 Nino developing year. However, it weakens E1 Nino events or even promotes cold phase conversions in an E1 Nino decaying year. Therefore, the en- tire period of the E1 Nino is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the E1 Nino developing years, the positive Indian Ocean Dipole (IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer E1 Nino event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin (IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Nino decaying years. As a result, the E1 Nino event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the E1 Nino during the developing years, whereas the IOB mode affects the E1 Nino during the decaying years.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 20103007 and 20473079).
文摘Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model. The dipole moment surfaces of NH3 and SbH3 are calculated with the density functional theory and at the correlated MP2 level, respectively. The calculated band intensities are in good agreement with the available experimental data. The contribution to the band intensities from the different terms in the polynomial expansion of the dipole moments of four group V hydrides (NH3, PH3, AsH3 and SbH3) are discussed. It is concluded that the breakdown of the bond dipole approximation must be considered. The intensity “borrowing” effect due to the wave function mixing among the stretching vibrational states is found to be less significant for the molecules that reach the local mode limit.
基金supported by the National Natural Science Foundation of China (Grant No.U0933603)Special Scientific Research Fund of Meteorological Public Welfare Profession of China(Grant No.GYHY201106005)+1 种基金Natural Science Foundation of Yunnan Province(Grant No.2009CC002)Youth Foundation of Yunnan Province(Grant No.2012FD001)
文摘Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and National Oceanic and Atmospheric Administration sea surface temperature data from 1981 to 2010,spatiotemporal distributions of NIO TC activity and relationships with local sea surface temperature(SST)were studied with statistical diagnosis methods.Results of empirical orthogonal function(EOF)analysis of NIO TC occurrence frequency show that the EOF1 mode,which accounts for 16%of total variance,consistently represents variations of TC occurrence frequency over the whole NIO basin.However,spatial dis- tributions of EOF1 mode are not uniform,mainly indicating variations of westward-moving TCs in the Bay of Bengal.The prevailing TC activity variation mode oscillates significantly on a quasi-5 year interannual time scale.NIO TC activity is notably influenced by the Indian Ocean dipole(IOD)mode.When the Indian Ocean is in a positive(negative)phase of the IOD, NIO SST anomalies are warm in the west(east)and cold in the east(west),which can weaken(strengthen)convection over the Bay of Bengal and eastern Arabian Sea,and cause anticyclonic(cyclonic)atmospheric circulation anomalies at low levels. This results in less(more)TC genesis and reduced(increased)opportunities for TC occurrence in the NIO.In addition,positive(negative)IOD events may strengthen(weaken)westerly steering flow over the Bay of Bengal,which further leads to fewer(more)westward-moving TCs which appear in regions west of 90°E in that bay.
基金supported by National Natural Science Foundation of China (Nos.10175013,10010760807)
文摘Vibrational mode in a two-dimensional dust monolayer is investigated by considering the finite size of dust grains. Each dust grain is assumed to be a negative point charge and a dipole moment due to the inhomogeneous charge distribution on its surface. The dispersion relation of the vibrational mode is derived. Both the self-excited and externally excited cases are discussed. It is shown that the mode is sensitive to the direction of the dipole moment.
文摘The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.
基金supported by the National Basic Research Program of China(973 Program,2012CB955603 &2010 CB950302)the Knowledge Innovation Program of the Chinese Academy of Sciences(XDA05090404)the National Natural Science Foundation of China(41149908)
文摘The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.