为了克服差分进化算法寻优精度低、收敛速度慢、稳定性差等不足,提出一种基于多变异策略的自适应差分进化算法(ADE-MM)。首先,在3个变异策略的选择过程中添加2个具有学习功能的扰动阈值,以提高种群多样性,扩大搜索范围;然后,根据上次迭...为了克服差分进化算法寻优精度低、收敛速度慢、稳定性差等不足,提出一种基于多变异策略的自适应差分进化算法(ADE-MM)。首先,在3个变异策略的选择过程中添加2个具有学习功能的扰动阈值,以提高种群多样性,扩大搜索范围;然后,根据上次迭代的成功参数自适应调整当前参数,提高寻优精度和寻优速度;最后,利用向量粒子池法和中心粒子法产生新的向量粒子,进一步提高寻优效果。使用8个函数、5种对比算法(RMDE、OLCPDE、JADE、Sa DE、MDE_pBX)进行测试,且每种例子都独立执行30次。ADE-MM算法在均值和方差的比较中取得了全胜,其中在30维的情况下取得了5个独立胜利,3个并列胜利;在50维的情况下取得了6个独立胜利,2个并列胜利;在100维的情况下全部为独立胜利。同时在Wilcoxon rank sum test、胜率和算法耗时分析中,ADE-MM算法也取得优异的表现。实验结果表明,相对于其他5种对比算法,ADE-MM算法具有更强的全局寻优能力、收敛性和稳定性。展开更多
文摘差分进化(differential evolution,DE)算法简单高效,但其控制参数和差分变异策略对待解的优化问题较为敏感,对问题的依赖性较强.为克服这一缺陷,提出了一种新的基于三角的骨架差分进化算法(bare-bones differential evolution algorithm based on trigonometry,tBBDE),并使用随机泛函理论分析了算法的收敛性.算法采用了三角高斯变异策略以及三元交叉和交叉概率自适应策略对个体进行更新,并在收敛停滞时进行种群扰动,算法不仅继承了骨架算法无参数的优点,而且还很好地保留了DE算法基于随机个体差异进行的特性.通过对包括单峰函数、多峰函数、偏移函数和高维函数的26个基准测试函数的仿真实验和分析,验证了新算法的有效性和可靠性,经与多种同类的骨架算法以及知名的DE算法在统计学上的分析比较,证明了该算法是一种具有竞争力的新算法.
文摘为了克服差分进化算法寻优精度低、收敛速度慢、稳定性差等不足,提出一种基于多变异策略的自适应差分进化算法(ADE-MM)。首先,在3个变异策略的选择过程中添加2个具有学习功能的扰动阈值,以提高种群多样性,扩大搜索范围;然后,根据上次迭代的成功参数自适应调整当前参数,提高寻优精度和寻优速度;最后,利用向量粒子池法和中心粒子法产生新的向量粒子,进一步提高寻优效果。使用8个函数、5种对比算法(RMDE、OLCPDE、JADE、Sa DE、MDE_pBX)进行测试,且每种例子都独立执行30次。ADE-MM算法在均值和方差的比较中取得了全胜,其中在30维的情况下取得了5个独立胜利,3个并列胜利;在50维的情况下取得了6个独立胜利,2个并列胜利;在100维的情况下全部为独立胜利。同时在Wilcoxon rank sum test、胜率和算法耗时分析中,ADE-MM算法也取得优异的表现。实验结果表明,相对于其他5种对比算法,ADE-MM算法具有更强的全局寻优能力、收敛性和稳定性。