In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The re- sults provide...In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The re- sults provide further constraints on the crustal formation and evolution history of NCC. Four 207Pb/206Pb age populations were obtained from 99 analyses, with clusters at ~3.40 Ga, 2.77―2.80 Ga, ~2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Ar- chean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ga detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77―2.80 Ga zircons make up a relatively small proportion and have the highest εHf (t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The ~2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at ~2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±23 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.展开更多
Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the pres...Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study. Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga. The youngest detrital zircon is dated at 1724±19 Ma which is interpreted as the maximum depositional age of the metasedimentary rocks. Therefore, the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma. Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton. This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time.展开更多
基金the National Natural Science Foundation of China (Grant No. 40773044)Incentives for Research Achievements of State Key Laboratory of Con-tinental Dynamics of Northwest University and Northwest University Graduate Innovation and Creativity Funds (Grant No. 07YZZ28)
文摘In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The re- sults provide further constraints on the crustal formation and evolution history of NCC. Four 207Pb/206Pb age populations were obtained from 99 analyses, with clusters at ~3.40 Ga, 2.77―2.80 Ga, ~2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Ar- chean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ga detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77―2.80 Ga zircons make up a relatively small proportion and have the highest εHf (t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The ~2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at ~2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±23 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.
基金Supported by the Chinese Development and National Science Council (Grant Nos. 91-2116-M-006-16 and 92-2116-M-006-010)
文摘Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study. Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga. The youngest detrital zircon is dated at 1724±19 Ma which is interpreted as the maximum depositional age of the metasedimentary rocks. Therefore, the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma. Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton. This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time.