The predictability of the position,spatial coverage and intensity of the East Asian subtropical westerly jet (EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems (EPSs) from four rep...The predictability of the position,spatial coverage and intensity of the East Asian subtropical westerly jet (EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems (EPSs) from four representative TIGGE centers,including the ECMWF,the NCEP,the CMA,and the JMA.Results showed that each EPS predicted all EASWJ properties well,while the levels of skill of all EPSs declined as the lead time extended.Overall,improvements from the control to the ensemble mean forecasts for predicting the EASWJ were apparent.For the deterministic forecasts of all EPSs,the prediction of the average axis was better than the prediction of the spatial coverage and intensity of the EASWJ.ECMWF performed best,with a lead of approximately 0.5-1 day in predictability over the second-best EPS for all EASWJ properties throughout the forecast range.For probabilistic forecasts,differences in skills among the different EPSs were more evident in the earlier part of the forecast for the EASWJ axis and spatial coverage,while they departed obviously throughout the forecast range for the intensity.ECMWF led JMA by about 0.5-1 day for the EASWJ axis,and by about 1-2 days for the spatial coverage and intensity at almost all lead times.The largest lead of ECMWF over the relatively worse EPSs,such as NCEP and CMA,was approximately 3-4 days for all EASWJ properties.In summary,ECMWF showed the highest level of skill for predicting the EASWJ,followed by JMA.展开更多
本文利用包含复杂冰相微物理过程的WRF(Weather Research and Forecasting)模式,针对2007年4月23日发生在我国华南地区的一次典型飑线天气过程,分别进行了确定性预报和集合预报试验,发现确定性预报能大致捕捉到飑线系统的发生发展过程,...本文利用包含复杂冰相微物理过程的WRF(Weather Research and Forecasting)模式,针对2007年4月23日发生在我国华南地区的一次典型飑线天气过程,分别进行了确定性预报和集合预报试验,发现确定性预报能大致捕捉到飑线系统的发生发展过程,但对飑线后部的层云区模拟效果较差。集合预报能够有效地减少模式的不确定性,大部分集合成员对飑线的模拟效果优于确定性预报。进一步将集合预报得到的40个成员作为背景场,采用En SRF(Ensemble Square Root Filter)同化多普勒天气雷达资料,并将分析得到的集合作为初始场进行集合预报,通过与未同化雷达资料的集合对比,考察了En SRF同化多部雷达资料对飑线系统的影响。结果表明:En SRF雷达资料同化增加了模式初始场的中小尺度信息,大部分集合成员的分析场能够较准确地再现飑线的热力场、动力场和微物理场的细致特征,并且模拟出飑线后部的层云结构。通过对En SRF分析的集合进行模拟发现,大部分集合成员较未同化雷达资料时模拟效果有明显改善。同化后的集合预报ETS(Equitable Threat Score)评分最高,其次是未同化的集合预报,确定性预报的最低。展开更多
As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on th...As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.展开更多
基于1979~2017年(共39年)NCEP/NCAR第一套再分析数据首先对欧亚大陆500 hPa持续性高值[Persistent open ridges and blocking high(maxima)of 500 hPa geopotential height,PMZ]事件的气候分布特征进行了统计分析,发现欧亚地区冬季PMZ...基于1979~2017年(共39年)NCEP/NCAR第一套再分析数据首先对欧亚大陆500 hPa持续性高值[Persistent open ridges and blocking high(maxima)of 500 hPa geopotential height,PMZ]事件的气候分布特征进行了统计分析,发现欧亚地区冬季PMZ事件主要发生在乌拉尔山地区,该地区的PMZ事件生命史以2~3 d为主,移动距离小于1000 km。通过对2018年冬季发生在鄂霍茨克海地区的阻塞形势检验得出,GRAPES(Global/Regional Assimilation and Prediction Enhanced System)和ECMWF(European Centre for Medium-Range Weather Forecasts)确定性模式在中短期时效对偏强阻塞形势有较好的预报能力,且ECMWF模式预报性能优于GRAPES模式,而对弱阻塞形势预报两家模式均不理想。随后针对GRAPES全球集合预报系统(GRAPESGEPS)和ECMWF集合预报对2018年冬季欧亚地区PMZ事件的预报能力开展细致评估,结果表明GRAPESGEPS控制预报在中期时效预报效果相对短期时效明显偏差,集合预报伴随预报时效临近更多的集合成员可预报出与零场接近的PMZ事件。ECMWF在短期时效预报效果明显由于GRAPES-GEPS,但随着预报时效延长,预报效果显著降低。对于2018年12月25~31日的PMZ事件,GRAPES_GEPS各集合成员在延伸期时效给出预报信息,随预报时效临近,集合成员预报成功率明显增加,但与零场相比PMZ事件维持时间较零场偏短、高压脊强度较零场偏弱。本文给出了中期延伸期时效GRAPES_GEPS对PMZ事件的冬季预报能力,以期未来能为中期延伸期阻塞形势预报提供参考。展开更多
基金supported by the National (Key) Basic Research and Development Program of China (Grant No. 2012CB17204)
文摘The predictability of the position,spatial coverage and intensity of the East Asian subtropical westerly jet (EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems (EPSs) from four representative TIGGE centers,including the ECMWF,the NCEP,the CMA,and the JMA.Results showed that each EPS predicted all EASWJ properties well,while the levels of skill of all EPSs declined as the lead time extended.Overall,improvements from the control to the ensemble mean forecasts for predicting the EASWJ were apparent.For the deterministic forecasts of all EPSs,the prediction of the average axis was better than the prediction of the spatial coverage and intensity of the EASWJ.ECMWF performed best,with a lead of approximately 0.5-1 day in predictability over the second-best EPS for all EASWJ properties throughout the forecast range.For probabilistic forecasts,differences in skills among the different EPSs were more evident in the earlier part of the forecast for the EASWJ axis and spatial coverage,while they departed obviously throughout the forecast range for the intensity.ECMWF led JMA by about 0.5-1 day for the EASWJ axis,and by about 1-2 days for the spatial coverage and intensity at almost all lead times.The largest lead of ECMWF over the relatively worse EPSs,such as NCEP and CMA,was approximately 3-4 days for all EASWJ properties.In summary,ECMWF showed the highest level of skill for predicting the EASWJ,followed by JMA.
基金Supported by the Research Project of China Meteorological Administration(CMA)Institute of Atmospheric Environment(2021SYI AEKFMS11)National Key Research and Development Program of China(2021YFA0718000)+3 种基金National Natural Science Foundation of China(42175052 and 42005037)Joint Research Project for Meteorological Capacity Improvement(22NLTSY008)CMA Special Project for Innovative Development(CXFZ2022J008)CMA Youth Innovation Team Fund(CMA2024QN06 and CMA2024QN05).
文摘As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.
文摘基于1979~2017年(共39年)NCEP/NCAR第一套再分析数据首先对欧亚大陆500 hPa持续性高值[Persistent open ridges and blocking high(maxima)of 500 hPa geopotential height,PMZ]事件的气候分布特征进行了统计分析,发现欧亚地区冬季PMZ事件主要发生在乌拉尔山地区,该地区的PMZ事件生命史以2~3 d为主,移动距离小于1000 km。通过对2018年冬季发生在鄂霍茨克海地区的阻塞形势检验得出,GRAPES(Global/Regional Assimilation and Prediction Enhanced System)和ECMWF(European Centre for Medium-Range Weather Forecasts)确定性模式在中短期时效对偏强阻塞形势有较好的预报能力,且ECMWF模式预报性能优于GRAPES模式,而对弱阻塞形势预报两家模式均不理想。随后针对GRAPES全球集合预报系统(GRAPESGEPS)和ECMWF集合预报对2018年冬季欧亚地区PMZ事件的预报能力开展细致评估,结果表明GRAPESGEPS控制预报在中期时效预报效果相对短期时效明显偏差,集合预报伴随预报时效临近更多的集合成员可预报出与零场接近的PMZ事件。ECMWF在短期时效预报效果明显由于GRAPES-GEPS,但随着预报时效延长,预报效果显著降低。对于2018年12月25~31日的PMZ事件,GRAPES_GEPS各集合成员在延伸期时效给出预报信息,随预报时效临近,集合成员预报成功率明显增加,但与零场相比PMZ事件维持时间较零场偏短、高压脊强度较零场偏弱。本文给出了中期延伸期时效GRAPES_GEPS对PMZ事件的冬季预报能力,以期未来能为中期延伸期阻塞形势预报提供参考。