Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insight...Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.展开更多
The Bohai Bay and Hehuai(southern North China) rift basins in the eastern part of the North China Craton are southnorth-adjacent. They have shown synchronous evolutionary processes, and possess generally identical sup...The Bohai Bay and Hehuai(southern North China) rift basins in the eastern part of the North China Craton are southnorth-adjacent. They have shown synchronous evolutionary processes, and possess generally identical superficial and shallow structural characteristics as well as similar basin areas. However, there is a large difference in the richness of oil resources between the two basins. The Bohai Bay Basin has extremely abundant oil reserves, while commercial oil reserves have not been found in the Hehuai Basin. The deep tectonic structures, magmatic activities, and modern and paleo-geothermal fields of the two basins are significantly different. Compared with the Hehuai Basin, the Bohai Bay Basin has a thinner crust and more complex structure with multiple low-velocity layers. It is also characterized by intense magmatic activity, high modern and paleogeothermal fields, frequent seismic activity, and active deep interactions, small effective elastic thickness of the isotropic lithosphere, and shorter balanced transformation wavelength of the lithosphere with a high likelihood of local compensation. The Hehuai Basin has a simple deep structure and homogeneous crustal composition, with a high likelihood of regional compensation. The characteristics of the deep structures mentioned above are generally similar to those of the southern part of the stable Ordos Basin, except for the smaller crust thickness. This indicates the presence of differences in Mesozoic destruction between the southern and northern zones in the eastern part of the North China Craton. The northern zone was subjected to significant destruction, while the southern zone was subjected to modifications, primarily in the form of local changes in the structures and/or properties of the crust or lithospheric mantle, with the overall structure and stability of the craton kept intact. The formation of high-quality source rock is primarily influenced by the abnormal flourishment of organisms in water bodies during the syndepositional period, and is also 展开更多
基金Supported by the Key Program of National Natural Science Foundation of China (Grant No. 90814000)
文摘Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41330315, 91214301, 90814005)the Special Fund of the State Key Laboratory of Continental Dynamics (Northwest University).
文摘The Bohai Bay and Hehuai(southern North China) rift basins in the eastern part of the North China Craton are southnorth-adjacent. They have shown synchronous evolutionary processes, and possess generally identical superficial and shallow structural characteristics as well as similar basin areas. However, there is a large difference in the richness of oil resources between the two basins. The Bohai Bay Basin has extremely abundant oil reserves, while commercial oil reserves have not been found in the Hehuai Basin. The deep tectonic structures, magmatic activities, and modern and paleo-geothermal fields of the two basins are significantly different. Compared with the Hehuai Basin, the Bohai Bay Basin has a thinner crust and more complex structure with multiple low-velocity layers. It is also characterized by intense magmatic activity, high modern and paleogeothermal fields, frequent seismic activity, and active deep interactions, small effective elastic thickness of the isotropic lithosphere, and shorter balanced transformation wavelength of the lithosphere with a high likelihood of local compensation. The Hehuai Basin has a simple deep structure and homogeneous crustal composition, with a high likelihood of regional compensation. The characteristics of the deep structures mentioned above are generally similar to those of the southern part of the stable Ordos Basin, except for the smaller crust thickness. This indicates the presence of differences in Mesozoic destruction between the southern and northern zones in the eastern part of the North China Craton. The northern zone was subjected to significant destruction, while the southern zone was subjected to modifications, primarily in the form of local changes in the structures and/or properties of the crust or lithospheric mantle, with the overall structure and stability of the craton kept intact. The formation of high-quality source rock is primarily influenced by the abnormal flourishment of organisms in water bodies during the syndepositional period, and is also