Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task o...Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.展开更多
It is well known that the p-type AlGaN electron blocking layer(p-EBL) can block hole injection for deep ultraviolet light-emitting diodes(DUV LEDs). The polarization induced electric field in the p-EBL for [0001] orie...It is well known that the p-type AlGaN electron blocking layer(p-EBL) can block hole injection for deep ultraviolet light-emitting diodes(DUV LEDs). The polarization induced electric field in the p-EBL for [0001] oriented DUV LEDs makes the holes less mobile and thus further decreases the hole injection capability. Fortunately,enhanced hole injection is doable by making holes lose less energy, and this is enabled by a specifically designed p-EBL structure that has a graded AlN composition. The proposed p-EBL can screen the polarization induced electric field in the p-EBL. As a result, holes will lose less energy after going through the proposed p-EBL, which correspondingly leads to the enhanced hole injection. Thus, an external quantum efficiency of 7.6% for the 275 nm DUV LED structure is obtained.展开更多
Plastic pollution as a global environmental issue has become a research hotspot,among which the removal of inherent plasticizer(e.g.,phthalic acid esters,PAEs)received increasing attention.However,the effects of bioch...Plastic pollution as a global environmental issue has become a research hotspot,among which the removal of inherent plasticizer(e.g.,phthalic acid esters,PAEs)received increasing attention.However,the effects of biochars derived from different feedstocks on the adsorption of PAEs are poorly understood.Thus,the characteristics of biochars derived from six largely produced biomass wastes in China at 400°C,as well as their performance in adsorption of diethyl phthalate(DEP),one of frequently detected PAEs in aqueous environment,were investigated.The results indicated that the variation in feedstock type showed significant changes in the properties(e.g.,porosity,specific surface area,surface functional groups)of biochars,which affected DEP adsorption and desorption.Pseudosecond order and Freundlich models fitted the adsorption data well,and adsorption mechanisms mainly included hydrophobic effect,followed by micropore filling,hydrogen bonding,andπ-πEDA interactions.Adsorption thermodynamics revealed that the adsorption was a spontaneous and exothermic the adsorption capacities of DEP on these biochars slightly decreased with the increasing pH but increased with the increasing ionic strength.Among these biochars,the giant reed biochar with relatively higher DEP adsorption and low desorption exhibited the great efficiency for DEP removal as an environment-friendly sorbent.These results highlighted the significant roles of micropore filling and hydrogen bond in determining adsorption capacity of designed biochars prepared from selecting suitable agricultural straws and wetland plant waste to typical plasticizer.The findings are useful for producing designed biochars from different biomass wastes for plasticizer pollution control.展开更多
Fast and accurate prediction of urban flood is of considerable practical importance to mitigate the effects of frequent flood disasters in advance.To improve urban flood prediction efficiency and accuracy,we proposed ...Fast and accurate prediction of urban flood is of considerable practical importance to mitigate the effects of frequent flood disasters in advance.To improve urban flood prediction efficiency and accuracy,we proposed a framework for fast mapping of urban flood:a coupled model based on physical mechanisms was first constructed,a rainfall-inundation database was generated,and a hybrid flood mapping model was finally proposed using the multi-objective random forest(MORF)method.The results show that the coupled model had good reliability in modelling urban flood,and 48 rainfall-inundation scenarios were then specified.The proposed hybrid MORF model in the framework also demonstrated good performance in predicting inundated depth under the observed and scenario rainfall events.The spatial inundated depths predicted by the MORF model were close to those of the coupled model,with differences typically less than 0.1 m and an average correlation coefficient reaching 0.951.The MORF model,however,achieved a computational speed of 200 times faster than the coupled model.The overall prediction performance of the MORF model was also better than that of the k-nearest neighbor model.Our research provides a novel approach to rapid urban flood mapping and flood early warning.展开更多
Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations...Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations, a lot of thefts and damages occur due to the still high cost of the modules. A new experimental WSN ad-hoc has been designed to be an anti-theft alarm system. Each node of the network is directly installed under each PV string and it is equipped with an accelerometer sensor capable to detect a minimum displacement of the panel from its steady position. The WSN presents a star topology: a master node cyclically interrogates the slave nodes through RF link. It collects all the nodes responses and communicates though a RS-232 interface with a control PC checking the network status. When a slave node detects an alarm, continuous messages are sent to the control PC which turns on all the alarm signaling systems. The control PC is equipped with an open source operative system and software and provides for SMS, e-mail and sound-light signaling in case of alarm. It also communicates with a remote server where all the WSN information is stored. A first low cost experimental WSN has been already installed and it is working properly.展开更多
Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomic...Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomics research.A novel strategy of breeding by selective introgression(BBSI)has been proposed and practiced for simultaneous improvement,genetic dissection and allele mining of complex traits to realize BBD.BBSI has three phases:a)developing large numbers of trait-specific introgression lines(ILs)using backcross breeding in elite genetic backgrounds as the material platform of BBD;b)efficiently identifying genes or quantitative trait loci(QTL)and mining desirable alleles affecting different target traits from diverse donors as the information platform of BBD;and c)developing superior cultivars by BBD using designed QTL pyramiding or marker-assisted recurrent selection.Phase(a)has been implemented massively in rice by many Chinese research institutions and IRRI,resulting in the development of many new green super rice cultivars plus large numbers of ILs in 30+elite genetic backgrounds.Phase(b)has been demonstrated in a series of proof-of-concept studies of high-efficiency genetic dissection of rice yield and tolerance to abiotic stresses using ILs and DNA markers.Phase(c)has also been implemented by designed QTL pyramiding,resulting in a prototype of BBD in several successful cases.The BBSI strategy can be easily extended for simultaneous trait improvement,efficient gene and QTL discovery and allele mining of complex traits using advanced breeding lines from crosses between a common"backbone"parent and a set of elite parents in conventional pedigree breeding programs.BBSI can be relatively easily adopted by breeding programs with small budgets,but the BBSI-based BBD strategy can be fully and more efficiently implemented by large seed companies with sufficient capacity.展开更多
A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were...A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were studied by varying the size and content of rubber particles in a single model system(rubber particles with a uniform size). The optical properties of T-ABS resins were investigated in a mixed system of SBR/PB particles and a hi-modal particle system(rubber particles with two different sizes, 70 and 400 nm in diameter) of SBR particles. It was found that when the size of the smaller particles ( 70 nm) in the mixed system of SBR/PB particles was in the range of 50-100 nm in diameter, the T-ABS resins showed a better transparency. These results provide a flexible and practical process for the preparation of T-ABS resins with good optical and mechanical properties.展开更多
目的自行设计制作的新型经外周静脉置入中心静脉导管(peripherally inserted central catheter,PICC)握力器,并评估其可应用性。方法2017年1月至2018年1月,便利抽样法选择某医院中心静脉导管室置入PICC患者113名为研究对象,按时间先后...目的自行设计制作的新型经外周静脉置入中心静脉导管(peripherally inserted central catheter,PICC)握力器,并评估其可应用性。方法2017年1月至2018年1月,便利抽样法选择某医院中心静脉导管室置入PICC患者113名为研究对象,按时间先后将其分为对照组(n=59)和观察组(n=54)。对照组使用传统PICC握力器,而观察组使用新型PICC握力器。比较两组患者穿刺点渗血渗液、导管堵塞(血栓)并发症及患者、家属的满意度。结果观察组患者穿刺点没有出现渗血和导管堵塞(血栓),而对照组渗血和导管堵塞(血栓)发生率分别为13.6%(8/59)、10.2%(6/59),差异均有统计学意义(均P<0.01)。观察组患者满意度优于对照组患者差异有统计学意义(P<0.001)结论新型PICC握力器可减少导管并发症发生,且能提高PICC置管的安全性和便捷性。展开更多
An effective HIV-1 vaccine will be the ultimate solution for the prevention of HIV/AIDS, though HAART plays important roles in treating the disease. In this study, a large-scale recombinant DNA plasmid containing a de...An effective HIV-1 vaccine will be the ultimate solution for the prevention of HIV/AIDS, though HAART plays important roles in treating the disease. In this study, a large-scale recombinant DNA plasmid containing a designed HIV-1 multi-epitope- p24 chimeric gene was prepared and purified. Rhesus monkeys were then inoculated muscularly with the plasmid for four times in week 0, 4, 8 and 18. Whole blood was collected two weeks after the third and fourth inoculation, followed by serum and pe- ripheral blood mononuclear cell (PBMC) separation. The CTL activity and proliferation of PBMCs stimu- lated by macaque MHC-I-restricted HIV-1 CTL epi- tope peptide were analyzed by MTT and LDH release assay, respectively. Th1 cytokines in supernatant of cultured PBMC stimulated by HIV-1 CTL epitope peptide and anti-HIV-1 antibody in serum were as- sayed by ELISA. The results showed that increased CTL target-killing activity, higher secretion of Th1 cytokines (IFN-γ and IL-2) and promoted proliferative reaction of monkey PBMCs stimulated by HIV-1 CTL epitope peptide were detected in the immunization group inoculated by the recombinant DNA vaccine for three times, which were further enhanced by the fourth inoculation. At the same time, HIV-1 specific antibody in serum of immunized monkeys was higher than that in controls. We concluded that the designedHIV-1 DNA vaccine may induce HIV-1 specific cellular and humoral immunity on monkeys.展开更多
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
文摘Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.
基金National Natural Science Foundation of China(NSFC)(51502074)Natural Science Foundation of Hebei Province(F2017202052)+2 种基金Natural Science Foundation of Tianjin City(16JCYBJC16200)Program for Top 100Innovative Talents in Colleges and Universities of Hebei Province(SLRC2017032)Program for 100-Talent-Plan of Hebei Province(E2016100010)
文摘It is well known that the p-type AlGaN electron blocking layer(p-EBL) can block hole injection for deep ultraviolet light-emitting diodes(DUV LEDs). The polarization induced electric field in the p-EBL for [0001] oriented DUV LEDs makes the holes less mobile and thus further decreases the hole injection capability. Fortunately,enhanced hole injection is doable by making holes lose less energy, and this is enabled by a specifically designed p-EBL structure that has a graded AlN composition. The proposed p-EBL can screen the polarization induced electric field in the p-EBL. As a result, holes will lose less energy after going through the proposed p-EBL, which correspondingly leads to the enhanced hole injection. Thus, an external quantum efficiency of 7.6% for the 275 nm DUV LED structure is obtained.
基金supported by the Shandong Provincial Major Science and Technology Innovation Project(China)(2019JZZY020302)the National Natural Science Foundation of China(Grant No.22106136)+1 种基金Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(China)(220LH061)National Science Fund for Distinguished Young Scholars of Shandong Province(China)(ZR2021JQ13).
文摘Plastic pollution as a global environmental issue has become a research hotspot,among which the removal of inherent plasticizer(e.g.,phthalic acid esters,PAEs)received increasing attention.However,the effects of biochars derived from different feedstocks on the adsorption of PAEs are poorly understood.Thus,the characteristics of biochars derived from six largely produced biomass wastes in China at 400°C,as well as their performance in adsorption of diethyl phthalate(DEP),one of frequently detected PAEs in aqueous environment,were investigated.The results indicated that the variation in feedstock type showed significant changes in the properties(e.g.,porosity,specific surface area,surface functional groups)of biochars,which affected DEP adsorption and desorption.Pseudosecond order and Freundlich models fitted the adsorption data well,and adsorption mechanisms mainly included hydrophobic effect,followed by micropore filling,hydrogen bonding,andπ-πEDA interactions.Adsorption thermodynamics revealed that the adsorption was a spontaneous and exothermic the adsorption capacities of DEP on these biochars slightly decreased with the increasing pH but increased with the increasing ionic strength.Among these biochars,the giant reed biochar with relatively higher DEP adsorption and low desorption exhibited the great efficiency for DEP removal as an environment-friendly sorbent.These results highlighted the significant roles of micropore filling and hydrogen bond in determining adsorption capacity of designed biochars prepared from selecting suitable agricultural straws and wetland plant waste to typical plasticizer.The findings are useful for producing designed biochars from different biomass wastes for plasticizer pollution control.
基金financial or data support of the National Key R&D Program of China(2021YFC3001000)the National Natural Science Foundation of China(U1911204,51879107)+1 种基金the Natural Science Foundation of Guangdong Province(2023B1515020087,2022A1515010019)the Fund of Science and Technology Program of Guangzhou(202102020216)。
文摘Fast and accurate prediction of urban flood is of considerable practical importance to mitigate the effects of frequent flood disasters in advance.To improve urban flood prediction efficiency and accuracy,we proposed a framework for fast mapping of urban flood:a coupled model based on physical mechanisms was first constructed,a rainfall-inundation database was generated,and a hybrid flood mapping model was finally proposed using the multi-objective random forest(MORF)method.The results show that the coupled model had good reliability in modelling urban flood,and 48 rainfall-inundation scenarios were then specified.The proposed hybrid MORF model in the framework also demonstrated good performance in predicting inundated depth under the observed and scenario rainfall events.The spatial inundated depths predicted by the MORF model were close to those of the coupled model,with differences typically less than 0.1 m and an average correlation coefficient reaching 0.951.The MORF model,however,achieved a computational speed of 200 times faster than the coupled model.The overall prediction performance of the MORF model was also better than that of the k-nearest neighbor model.Our research provides a novel approach to rapid urban flood mapping and flood early warning.
文摘Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations, a lot of thefts and damages occur due to the still high cost of the modules. A new experimental WSN ad-hoc has been designed to be an anti-theft alarm system. Each node of the network is directly installed under each PV string and it is equipped with an accelerometer sensor capable to detect a minimum displacement of the panel from its steady position. The WSN presents a star topology: a master node cyclically interrogates the slave nodes through RF link. It collects all the nodes responses and communicates though a RS-232 interface with a control PC checking the network status. When a slave node detects an alarm, continuous messages are sent to the control PC which turns on all the alarm signaling systems. The control PC is equipped with an open source operative system and software and provides for SMS, e-mail and sound-light signaling in case of alarm. It also communicates with a remote server where all the WSN information is stored. A first low cost experimental WSN has been already installed and it is working properly.
基金funded by the National Key Research&Development Program of China(2017YFD0100100)Key-Area Research&Development Program of Guangdong Province(2020B020219004)+2 种基金Shenzhen Basic Research Special Project(2020231601)Agricultural Science and Technology Innovation Programthe Cooperation and Innovation Mission(CAAS2021-01)。
文摘Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomics research.A novel strategy of breeding by selective introgression(BBSI)has been proposed and practiced for simultaneous improvement,genetic dissection and allele mining of complex traits to realize BBD.BBSI has three phases:a)developing large numbers of trait-specific introgression lines(ILs)using backcross breeding in elite genetic backgrounds as the material platform of BBD;b)efficiently identifying genes or quantitative trait loci(QTL)and mining desirable alleles affecting different target traits from diverse donors as the information platform of BBD;and c)developing superior cultivars by BBD using designed QTL pyramiding or marker-assisted recurrent selection.Phase(a)has been implemented massively in rice by many Chinese research institutions and IRRI,resulting in the development of many new green super rice cultivars plus large numbers of ILs in 30+elite genetic backgrounds.Phase(b)has been demonstrated in a series of proof-of-concept studies of high-efficiency genetic dissection of rice yield and tolerance to abiotic stresses using ILs and DNA markers.Phase(c)has also been implemented by designed QTL pyramiding,resulting in a prototype of BBD in several successful cases.The BBSI strategy can be easily extended for simultaneous trait improvement,efficient gene and QTL discovery and allele mining of complex traits using advanced breeding lines from crosses between a common"backbone"parent and a set of elite parents in conventional pedigree breeding programs.BBSI can be relatively easily adopted by breeding programs with small budgets,but the BBSI-based BBD strategy can be fully and more efficiently implemented by large seed companies with sufficient capacity.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in Universities(No: IRT0422) and the Spe-cial Funds for Major State Basic Research Projects(No. G1999064803).
文摘A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were studied by varying the size and content of rubber particles in a single model system(rubber particles with a uniform size). The optical properties of T-ABS resins were investigated in a mixed system of SBR/PB particles and a hi-modal particle system(rubber particles with two different sizes, 70 and 400 nm in diameter) of SBR particles. It was found that when the size of the smaller particles ( 70 nm) in the mixed system of SBR/PB particles was in the range of 50-100 nm in diameter, the T-ABS resins showed a better transparency. These results provide a flexible and practical process for the preparation of T-ABS resins with good optical and mechanical properties.
文摘目的自行设计制作的新型经外周静脉置入中心静脉导管(peripherally inserted central catheter,PICC)握力器,并评估其可应用性。方法2017年1月至2018年1月,便利抽样法选择某医院中心静脉导管室置入PICC患者113名为研究对象,按时间先后将其分为对照组(n=59)和观察组(n=54)。对照组使用传统PICC握力器,而观察组使用新型PICC握力器。比较两组患者穿刺点渗血渗液、导管堵塞(血栓)并发症及患者、家属的满意度。结果观察组患者穿刺点没有出现渗血和导管堵塞(血栓),而对照组渗血和导管堵塞(血栓)发生率分别为13.6%(8/59)、10.2%(6/59),差异均有统计学意义(均P<0.01)。观察组患者满意度优于对照组患者差异有统计学意义(P<0.001)结论新型PICC握力器可减少导管并发症发生,且能提高PICC置管的安全性和便捷性。
文摘An effective HIV-1 vaccine will be the ultimate solution for the prevention of HIV/AIDS, though HAART plays important roles in treating the disease. In this study, a large-scale recombinant DNA plasmid containing a designed HIV-1 multi-epitope- p24 chimeric gene was prepared and purified. Rhesus monkeys were then inoculated muscularly with the plasmid for four times in week 0, 4, 8 and 18. Whole blood was collected two weeks after the third and fourth inoculation, followed by serum and pe- ripheral blood mononuclear cell (PBMC) separation. The CTL activity and proliferation of PBMCs stimu- lated by macaque MHC-I-restricted HIV-1 CTL epi- tope peptide were analyzed by MTT and LDH release assay, respectively. Th1 cytokines in supernatant of cultured PBMC stimulated by HIV-1 CTL epitope peptide and anti-HIV-1 antibody in serum were as- sayed by ELISA. The results showed that increased CTL target-killing activity, higher secretion of Th1 cytokines (IFN-γ and IL-2) and promoted proliferative reaction of monkey PBMCs stimulated by HIV-1 CTL epitope peptide were detected in the immunization group inoculated by the recombinant DNA vaccine for three times, which were further enhanced by the fourth inoculation. At the same time, HIV-1 specific antibody in serum of immunized monkeys was higher than that in controls. We concluded that the designedHIV-1 DNA vaccine may induce HIV-1 specific cellular and humoral immunity on monkeys.