为了提高空间谱中信号与噪声的区分度以及改善传统Toeplitz矩阵重构算法在进行波达方向(direction of arrival,DOA)估计时的精度,本文提出一种新的基于Toeplitz矩阵重构的DOA估计算法。首先将观测数据估计的自相关矩阵预处理得到数据向...为了提高空间谱中信号与噪声的区分度以及改善传统Toeplitz矩阵重构算法在进行波达方向(direction of arrival,DOA)估计时的精度,本文提出一种新的基于Toeplitz矩阵重构的DOA估计算法。首先将观测数据估计的自相关矩阵预处理得到数据向量,并基于数据向量进行Toeplitz矩阵重构;再对重构后的矩阵进行奇异值分解,得到信号子空间和噪声子空间;最后同时利用信号子空间和噪声子空间进行空间谱估计。结果表明:无论是相干源还是非相干源的DOA估计,该算法估计精度均优于传统Toeplitz算法,在非相干源的DOA估计精度性能与多重信号分类(multiple signal classification,MUSIC)算法一致,并在处理相干信源个数能力与传统Toeplitz算法相同。展开更多
文摘为了提高空间谱中信号与噪声的区分度以及改善传统Toeplitz矩阵重构算法在进行波达方向(direction of arrival,DOA)估计时的精度,本文提出一种新的基于Toeplitz矩阵重构的DOA估计算法。首先将观测数据估计的自相关矩阵预处理得到数据向量,并基于数据向量进行Toeplitz矩阵重构;再对重构后的矩阵进行奇异值分解,得到信号子空间和噪声子空间;最后同时利用信号子空间和噪声子空间进行空间谱估计。结果表明:无论是相干源还是非相干源的DOA估计,该算法估计精度均优于传统Toeplitz算法,在非相干源的DOA估计精度性能与多重信号分类(multiple signal classification,MUSIC)算法一致,并在处理相干信源个数能力与传统Toeplitz算法相同。