In cyber-physical systems, multidimensional data fusion is an important method to achieve comprehensive evaluation decisions and reduce data redundancy. In this paper, a data fusion algorithm based on fuzzy set theory...In cyber-physical systems, multidimensional data fusion is an important method to achieve comprehensive evaluation decisions and reduce data redundancy. In this paper, a data fusion algorithm based on fuzzy set theory and Dempster-Shafer(D-S) evidence theory is proposed to overcome the shortcomings of the existing decision-layer multidimensional data fusion algorithms. The basic probability distribution of evidence is determined based on fuzzy set theory and attribute weights, and the data fusion of attribute evidence is combined with the credibility of sensor nodes in a cyber-physical systems network. Experimental analysis shows that the proposed method has obvious advantages in the degree of the differentiation of the results.展开更多
The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensi...The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.展开更多
基金supported by the National Natural Science Foundation of China (No. 61462089)the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (No. X18002)
文摘In cyber-physical systems, multidimensional data fusion is an important method to achieve comprehensive evaluation decisions and reduce data redundancy. In this paper, a data fusion algorithm based on fuzzy set theory and Dempster-Shafer(D-S) evidence theory is proposed to overcome the shortcomings of the existing decision-layer multidimensional data fusion algorithms. The basic probability distribution of evidence is determined based on fuzzy set theory and attribute weights, and the data fusion of attribute evidence is combined with the credibility of sensor nodes in a cyber-physical systems network. Experimental analysis shows that the proposed method has obvious advantages in the degree of the differentiation of the results.
文摘The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.