Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catal...Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catalyzes the first step in the biosynthesis of phenylpropanoids. In the present study, we isolated a novel phenylalanine ammonialyase gene (designated as liPAL) from tetraploid Isatis indigotica Fort. by rapid amplification of cDNA ends (RACE), which was a cultivar from the diploid plant by genome duplication. The full-length cDNA of liPAL was 2 530-bp long with an open reading frame (ORF) of 2 178 bp encoding a polypeptide of 725 amino acid residues. Analysis of liPAL genomic DNA revealed that it was structurally similar to other plant PAL genes, with a single intron at a conserved position, and a long highly conserved second exon. Semi-quantitative RT-PCR revealed that the liPAL expression in roots and leaves from a tetraploid sample was higher than that in diploid progenitor, whereas expression of liPAL in stems was almost the same as each other. Furthermore, the highest expression of liPAL in tetraploid plant was found in roots, which was found in stems in diploid plants. Further expression analysis revealed that gibberelUn (GA3), abscisic acid (ABA), methyl jasmonate (MeJA) and cold treatments could up-regulate the liPAL transcription in tetraploid plants. All our findings suggest that liPAL participates not only in the defense/stress responsive pathways, but also probably in the polyploidy evolution of L indigotica.展开更多
Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive ove...Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.展开更多
Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved ...Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,in展开更多
Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, tra...Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.展开更多
Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan poly...Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan polymer, which contributes to slowing or blocking the invading fungal hyphae. In the model plant Arabidopsis thaliana, we could recently show that the overexpression of PMR4(POWDERY MILDEW RESITANT 4), which encodes a stress induced callose synthase, results in complete powdery mildew resistance. To evaluate if these findings are also transferable to monocot crops, we transiently expressed PMR4 under control of the 35S promoter in leaves of barley (Hordeum vulgare) seedlings, which were subsequently inoculated with the virulent powdery mildew Blumeria graminis f. sp. hordei. Fusion of the green fluorescent protein (GFP) to PMR4 allowed the identification of successfully transformed barley cells, which showed an increased penetration resistance to B. graminis compared to control cells that express only GFP.PMR4-GFP localized in a similar pattern at the site of attempted fungal penetration as observed inA. thaliana, which suggests that similar transport mechanisms of the callose synthase might exist in dicot and monocot plants.展开更多
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,esp...Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,especially benthic species lacking behavioral choices to select optimal habitats,have to utilize well-established strategies such as the antioxidant defense system(ADS)to ensure their survival.Therefore,understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges.Here we conducted a com-parative analysis of the physiological and transcriptional responses based on the ADS during two rounds of'hypersalinity-recovery'challenges in two model congeneric invasive ascidians,Ciona robusta and C.savignyi.Our results demonstrated that C.savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level,while C.robusta demonstrated heightened responses at the transcriptional level.We observed distinct transcriptional responses,particularly in the utilization of two superoxide dismutase(SOD)isoforms.Both Ciona species developed physiological stress memory with elevated total SOD(T-SOD)and glutathione(GSH)responses,while only C.robusta demonstrated transcriptional stress memory.The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species.These findings support the'context-dependent stress memory hypothesis',emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges.Our results enhance our understanding of the mechanisms of environmental challenge manage-ment in marine species,particularly those related to the ADS.展开更多
By 2050,the global population is projected to reach 9 billion,underscoring the imperative for innovative solutions to increase grain yield and enhance food security.Nanotechnology has emerged as a powerful tool,provid...By 2050,the global population is projected to reach 9 billion,underscoring the imperative for innovative solutions to increase grain yield and enhance food security.Nanotechnology has emerged as a powerful tool,providing unique solutions to this challenge.Nanoparticles(NPs)can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties.Moreover,they can be used to monitor crop health status and augment plant resilience against abiotic stresses(such as salinity,drought,heavy metals,and extreme temperatures)that endanger global agriculture.Application of NPs can enhance stress tolerance mechanisms in plants,minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality.This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers,policymakers,and agricultural practitioners.With thoughtful stewardship,nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.展开更多
基金Supported by the National Natural Science Foundation of China (30371746),
文摘Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catalyzes the first step in the biosynthesis of phenylpropanoids. In the present study, we isolated a novel phenylalanine ammonialyase gene (designated as liPAL) from tetraploid Isatis indigotica Fort. by rapid amplification of cDNA ends (RACE), which was a cultivar from the diploid plant by genome duplication. The full-length cDNA of liPAL was 2 530-bp long with an open reading frame (ORF) of 2 178 bp encoding a polypeptide of 725 amino acid residues. Analysis of liPAL genomic DNA revealed that it was structurally similar to other plant PAL genes, with a single intron at a conserved position, and a long highly conserved second exon. Semi-quantitative RT-PCR revealed that the liPAL expression in roots and leaves from a tetraploid sample was higher than that in diploid progenitor, whereas expression of liPAL in stems was almost the same as each other. Furthermore, the highest expression of liPAL in tetraploid plant was found in roots, which was found in stems in diploid plants. Further expression analysis revealed that gibberelUn (GA3), abscisic acid (ABA), methyl jasmonate (MeJA) and cold treatments could up-regulate the liPAL transcription in tetraploid plants. All our findings suggest that liPAL participates not only in the defense/stress responsive pathways, but also probably in the polyploidy evolution of L indigotica.
文摘Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province,the Research Fund for the Doctoral Program of Higher Education of China,the Program for New Century Excellent Talents in University,the grant from the Education Department of Jiangsu
文摘Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.
基金supported by National Natural Science Foundation of China (No. 30600807)Modernization of traditional Chinese medicine foundation (No. 08DZ1971502)+1 种基金western development cooperation foundation (No. 084358014)Shanghai Science and Technology Committee~~
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,in
基金supported by the grants from the National Key R&D Program of China (2017YFD0100901-4 and 2016YFC0502604)the National Natural Science Foundation of China (31660390)+5 种基金the Major Special Project of Science and Technology Program in Guizhou, China (2017-5411-06 and 2017-5788)the Construction Project of State Engineering Technology Institute for Karst Desertification Control, China (2012FU125X13)the Innovation Talents Team Construction of Science and Technology in Guizhou, China (2016-5624)the Major Research Project of Innovation Group in Guizhou, China (2016-023)the Graduate Innovation Fund of Guizhou University, China (2017025)the Science and Technology Project in Guizhou, China (2019-4246)
文摘Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.
文摘Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan polymer, which contributes to slowing or blocking the invading fungal hyphae. In the model plant Arabidopsis thaliana, we could recently show that the overexpression of PMR4(POWDERY MILDEW RESITANT 4), which encodes a stress induced callose synthase, results in complete powdery mildew resistance. To evaluate if these findings are also transferable to monocot crops, we transiently expressed PMR4 under control of the 35S promoter in leaves of barley (Hordeum vulgare) seedlings, which were subsequently inoculated with the virulent powdery mildew Blumeria graminis f. sp. hordei. Fusion of the green fluorescent protein (GFP) to PMR4 allowed the identification of successfully transformed barley cells, which showed an increased penetration resistance to B. graminis compared to control cells that express only GFP.PMR4-GFP localized in a similar pattern at the site of attempted fungal penetration as observed inA. thaliana, which suggests that similar transport mechanisms of the callose synthase might exist in dicot and monocot plants.
基金supported by the National Natural Science Foundation of China(Grant No.32061143012 to A.Z.,32101352 to X.H.).
文摘Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,especially benthic species lacking behavioral choices to select optimal habitats,have to utilize well-established strategies such as the antioxidant defense system(ADS)to ensure their survival.Therefore,understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges.Here we conducted a com-parative analysis of the physiological and transcriptional responses based on the ADS during two rounds of'hypersalinity-recovery'challenges in two model congeneric invasive ascidians,Ciona robusta and C.savignyi.Our results demonstrated that C.savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level,while C.robusta demonstrated heightened responses at the transcriptional level.We observed distinct transcriptional responses,particularly in the utilization of two superoxide dismutase(SOD)isoforms.Both Ciona species developed physiological stress memory with elevated total SOD(T-SOD)and glutathione(GSH)responses,while only C.robusta demonstrated transcriptional stress memory.The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species.These findings support the'context-dependent stress memory hypothesis',emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges.Our results enhance our understanding of the mechanisms of environmental challenge manage-ment in marine species,particularly those related to the ADS.
基金supported by the National Key Research and Development Program of China(2023YFE0102200)the National Natural Science Foundation of China(31201247)+3 种基金the National Natural Science Foundation of Xinjiang(2022D01A159)supported by the Taishan Scholar Special Project Fund of Shandong Provincethe National Natural Science Foundation of China(32370326,32170311)by the Program of Shandong University Qilu Young Scholars.
文摘By 2050,the global population is projected to reach 9 billion,underscoring the imperative for innovative solutions to increase grain yield and enhance food security.Nanotechnology has emerged as a powerful tool,providing unique solutions to this challenge.Nanoparticles(NPs)can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties.Moreover,they can be used to monitor crop health status and augment plant resilience against abiotic stresses(such as salinity,drought,heavy metals,and extreme temperatures)that endanger global agriculture.Application of NPs can enhance stress tolerance mechanisms in plants,minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality.This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers,policymakers,and agricultural practitioners.With thoughtful stewardship,nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.