Crystal phase engineering on CulnS2(CIS)nanocrystals,especially polytypic structure,has become one of the research hotspots to design the advanced materials and devices for energy conversion and environment treatment....Crystal phase engineering on CulnS2(CIS)nanocrystals,especially polytypic structure,has become one of the research hotspots to design the advanced materials and devices for energy conversion and environment treatment.Here,the polytypic CIS nanosheets(NSs)including zincblende/wutzite and chalcopyrite/wurtzite types were first time achieved in a hot-injection system using oleic acid and liquid paraffin as the reaction media.As-obtained polytypic CIS NSs exhibit significantly enhanced light-absorption abillty and visible-light-driven photocatalytic performance originating from the rational hetero-crystalline interfaces and surface defect states,which efficiently inhibit the recombination of photo-generated carriers.Meanwhile,the polytypic CIS NSs were spin-coated onto the surface of fluorinated-tin oxide glass substrate and used as the photoelectrode,which shows an excellent photoelectrochemical(PEC)activity in aqueous solution.The present work not only provides a facile,rapid,low-cost,and environmental-friendly synthesis strategy to design the crystal phase and defect structure of ternary chalcogenides,but also demonstrates the relationships between the polytypic structure and photocatalytic/photoelectrochemical properties.展开更多
Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault i...Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the deliberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this study are to measure and analyze defect leakage;Amplification Index (AI) of errors and examine “Domino” effect of defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach endeavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java).展开更多
基金This work was financially supported by the Joint Foundation of National Natural Science Foundation of China(No.U1764254)321 Talent Project of Nanjing,China(No.631783)and 111 Project,China(No.D17003)
文摘Crystal phase engineering on CulnS2(CIS)nanocrystals,especially polytypic structure,has become one of the research hotspots to design the advanced materials and devices for energy conversion and environment treatment.Here,the polytypic CIS nanosheets(NSs)including zincblende/wutzite and chalcopyrite/wurtzite types were first time achieved in a hot-injection system using oleic acid and liquid paraffin as the reaction media.As-obtained polytypic CIS NSs exhibit significantly enhanced light-absorption abillty and visible-light-driven photocatalytic performance originating from the rational hetero-crystalline interfaces and surface defect states,which efficiently inhibit the recombination of photo-generated carriers.Meanwhile,the polytypic CIS NSs were spin-coated onto the surface of fluorinated-tin oxide glass substrate and used as the photoelectrode,which shows an excellent photoelectrochemical(PEC)activity in aqueous solution.The present work not only provides a facile,rapid,low-cost,and environmental-friendly synthesis strategy to design the crystal phase and defect structure of ternary chalcogenides,but also demonstrates the relationships between the polytypic structure and photocatalytic/photoelectrochemical properties.
文摘Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the deliberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this study are to measure and analyze defect leakage;Amplification Index (AI) of errors and examine “Domino” effect of defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach endeavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java).