介绍深海油气勘探开发的现状,从工作水深、海况适应性、可变载荷、结构、材料、装备、功能等多方面分析了第五、第六代深海半潜式钻井平台的发展特点和趋势,并在现场调研的基础上对新一代半潜式钻井平台GlobalSantaFe Development Dril...介绍深海油气勘探开发的现状,从工作水深、海况适应性、可变载荷、结构、材料、装备、功能等多方面分析了第五、第六代深海半潜式钻井平台的发展特点和趋势,并在现场调研的基础上对新一代半潜式钻井平台GlobalSantaFe Development Driller进行了技术说明。展开更多
A pressure tight sediment sampling technology, which can be introduced into the modification of the piston corer to accommodate the investigation of gas hydrate, is put forward. In this paper, the three basic rules of...A pressure tight sediment sampling technology, which can be introduced into the modification of the piston corer to accommodate the investigation of gas hydrate, is put forward. In this paper, the three basic rules of the technology are analyzed in detail: specimen transferring rule, seal self-tightening rule and semi-active pressure holding rule. Based on these, the structure of the pressure tight piston corer is put forward and its working principle is analyzed. Finally, a pressure tight sediment sampler, to which the same technology is applied, is researched through experiments. Results show that the sampler based on the above-mentioned theory has a good ability in sampling and in -situ pressure holding.展开更多
Analyzed and calculated are pressure changes and body deformation of the sample inside of the corer in the process of sampling of deep-sea shallow sediment with a non-piston corer for gas hydrate investigation, Two co...Analyzed and calculated are pressure changes and body deformation of the sample inside of the corer in the process of sampling of deep-sea shallow sediment with a non-piston corer for gas hydrate investigation, Two conclusions are drawn: (1) the stress increments associated with the corer through the sampling process do not affect the stabilization of the gas hydrate; (2) the body deformation of the sample is serious and the "incremental filling ratio" (IFR) is less than unit, For taking samples with in-situ pressure and structure, combining with the design theories of the pressure tight corer, we have designed a kind of piston corer, named the gas hydrate pressure tight piston corer, Several tests on the sea have been conducted. Test results indicate that the piston corer has a good ability of taking sediment samples on the seafloor and maintaining their original in-situ pressure, meeting the requirement of exploration of gas hydrate in deep-sea shallow sediment layers.展开更多
基金The research program was financially supported by the Joint Program of Chinese 863 Project (Grant No. 2001AA612020-2)
文摘A pressure tight sediment sampling technology, which can be introduced into the modification of the piston corer to accommodate the investigation of gas hydrate, is put forward. In this paper, the three basic rules of the technology are analyzed in detail: specimen transferring rule, seal self-tightening rule and semi-active pressure holding rule. Based on these, the structure of the pressure tight piston corer is put forward and its working principle is analyzed. Finally, a pressure tight sediment sampler, to which the same technology is applied, is researched through experiments. Results show that the sampler based on the above-mentioned theory has a good ability in sampling and in -situ pressure holding.
基金The project was financially supported bythe National Natural science Foundation of China (Grant No.50675055)
文摘Analyzed and calculated are pressure changes and body deformation of the sample inside of the corer in the process of sampling of deep-sea shallow sediment with a non-piston corer for gas hydrate investigation, Two conclusions are drawn: (1) the stress increments associated with the corer through the sampling process do not affect the stabilization of the gas hydrate; (2) the body deformation of the sample is serious and the "incremental filling ratio" (IFR) is less than unit, For taking samples with in-situ pressure and structure, combining with the design theories of the pressure tight corer, we have designed a kind of piston corer, named the gas hydrate pressure tight piston corer, Several tests on the sea have been conducted. Test results indicate that the piston corer has a good ability of taking sediment samples on the seafloor and maintaining their original in-situ pressure, meeting the requirement of exploration of gas hydrate in deep-sea shallow sediment layers.