采用溶胶凝胶法和浸渍法制备了以陶瓷颗粒为骨架的纳米级V2O5-WO3/TiO2(C)催化剂,并用X射线衍射(X-ray diffraction,XRD)和扫描电子透镜(transmission electron microscopy,TEM)表征了催化剂的晶型和形貌。研究了TiO2凝胶热处理温度和WO...采用溶胶凝胶法和浸渍法制备了以陶瓷颗粒为骨架的纳米级V2O5-WO3/TiO2(C)催化剂,并用X射线衍射(X-ray diffraction,XRD)和扫描电子透镜(transmission electron microscopy,TEM)表征了催化剂的晶型和形貌。研究了TiO2凝胶热处理温度和WO3负载量等重要参数对催化剂在以NH3为还原剂的选择性催化还原(selectivecatalytic reduc-tion,SCR)系统中的反应温度窗口、抗硫性的影响。最后考察了催化剂在不同NH3/NO比、O2含量、空速等因素下的性能指标。结果表明,在260~420℃的温度范围内,以陶瓷为骨架的负载型纳米V2O5-WO3/TiO2催化剂具有较高的SCR催化活性,且性能稳定;TiO2以锐钛形式存在的催化剂表现出高的抗硫性能,而TiO2以锐钛和金红石混晶形式存在时,抗硫性能比较差,但硫的中毒是可逆的,可再生;WO3负载量的增加提高了催化剂的活性。展开更多
We made precipitated nano-ceria(~5 nm) on the surface of the catalyst by heat treatment of Cesupersaturated amorphous CeTiOxto improve the oxygen storage properties of CeO_2. The catalysts were prepared by sol-gel met...We made precipitated nano-ceria(~5 nm) on the surface of the catalyst by heat treatment of Cesupersaturated amorphous CeTiOxto improve the oxygen storage properties of CeO_2. The catalysts were prepared by sol-gel methods and TiO_2 nanoparticles were preferentially generated as a core material to form selective Ce-supersaturated structure on the catalyst surface. Reaction temperature and amount of doping element are optimized to induce selective crystallization of CeO_2. Cee Ce(2 nd shell)bond around 0.38 nm of Ce L3-edge extended X-ray absorption fine structure is reduced and nanostructure of precipitated ceria on the surface is observed by HREM. The catalyst is present as amorphous with precipitated nano-CeO_2 on the surface. The de-NOxefficiency of the catalyst, which has precipitated CeO_2, improves by ~50% owing to the simultaneous reactions of the nano CeO_2 and the amorphous CeTiO_x.展开更多
文摘采用溶胶凝胶法和浸渍法制备了以陶瓷颗粒为骨架的纳米级V2O5-WO3/TiO2(C)催化剂,并用X射线衍射(X-ray diffraction,XRD)和扫描电子透镜(transmission electron microscopy,TEM)表征了催化剂的晶型和形貌。研究了TiO2凝胶热处理温度和WO3负载量等重要参数对催化剂在以NH3为还原剂的选择性催化还原(selectivecatalytic reduc-tion,SCR)系统中的反应温度窗口、抗硫性的影响。最后考察了催化剂在不同NH3/NO比、O2含量、空速等因素下的性能指标。结果表明,在260~420℃的温度范围内,以陶瓷为骨架的负载型纳米V2O5-WO3/TiO2催化剂具有较高的SCR催化活性,且性能稳定;TiO2以锐钛形式存在的催化剂表现出高的抗硫性能,而TiO2以锐钛和金红石混晶形式存在时,抗硫性能比较差,但硫的中毒是可逆的,可再生;WO3负载量的增加提高了催化剂的活性。
基金Project supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)through GCRC-SOP(2011-0030013)
文摘We made precipitated nano-ceria(~5 nm) on the surface of the catalyst by heat treatment of Cesupersaturated amorphous CeTiOxto improve the oxygen storage properties of CeO_2. The catalysts were prepared by sol-gel methods and TiO_2 nanoparticles were preferentially generated as a core material to form selective Ce-supersaturated structure on the catalyst surface. Reaction temperature and amount of doping element are optimized to induce selective crystallization of CeO_2. Cee Ce(2 nd shell)bond around 0.38 nm of Ce L3-edge extended X-ray absorption fine structure is reduced and nanostructure of precipitated ceria on the surface is observed by HREM. The catalyst is present as amorphous with precipitated nano-CeO_2 on the surface. The de-NOxefficiency of the catalyst, which has precipitated CeO_2, improves by ~50% owing to the simultaneous reactions of the nano CeO_2 and the amorphous CeTiO_x.