Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using ...Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole- genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is respon- sible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day condi- tions, and are adapted to the northernmost regions of rice cultivation, up to 53~ N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and GhdT/ Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions.展开更多
Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of t...Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehdl, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehdl, Hd3a and RFT1 under long-day conditions.展开更多
In 1991, the Yunnan Provincial Institute of Cultural Relics and Archaeology, in co-operation with other institutions, carried out the secondary excavation in the Jiangchuan Lijiashan cemetery. The 60 excavated tombs a...In 1991, the Yunnan Provincial Institute of Cultural Relics and Archaeology, in co-operation with other institutions, carried out the secondary excavation in the Jiangchuan Lijiashan cemetery. The 60 excavated tombs are all earth-pit graves without clear data on coffins and fall into three types: large-, medium- and small-sized. Among the grave goods are bronzes, irons, gold- and silver-wares, jade, agate and other precious stone artifacts, bamboo articles and wooden objects. The bronzes and irons include mainly implements of production and weapons, and also instruments of funeral ritual. According to the stratigraphical evidence of the cemetery and changes in the combination of funeral objects, the tombs can be divided into four phases. The first phase contains 28 mediun and small-sized tombs with irons as the main grave goods and without bronze-and-iron compound objects, and goes back to the mid Western Han period, prior to Wudi's reign. The second phase is represented by Tombs M47 and MS1, both furnished with a second-tier platform and containing a two-person joint burial. The large-sized tomb yielded bronze weapons, hoes, spades, and a tomb-figurine of a male holding an umbrella. The medium and small tombs are furnished chiefly with bronzes, and also a few bronze-and-iron compound articles. They date from the mid and late Western Han period. The third phase is represented by Tomb M82 and features the increase of bronze-and-silver ware. The large-sized tomb contains less bronze-ware; in the medium and small graves, bronze-and-iron ware, irons, horse trappings and lacquer-ware occur commonly. They can be assigned to the time from the late Western Han to the early Eastern Han period. The fourth phase comprises only three tombs, M49 and other two. Their funeral objects feature the sharp discrease of Dian-style articles and the emergence of Han-style objects,such as fu cauldrons, zeng steamers and incense burners. They go back to the earlier Eastern Han period.展开更多
Heading date is a critical trait that determines cropping seasons and regional adaptability in rice (Oryza sativa). Research efforts during the last decade have identified some important photoperiod pathway genes th...Heading date is a critical trait that determines cropping seasons and regional adaptability in rice (Oryza sativa). Research efforts during the last decade have identified some important photoperiod pathway genes that are conserved between Arabidopsis and rice. In this study, we identified a novel gene, Oryza sativa ELF3 (OsELF3), which is a putative homolog of the ELF3 gene in Arabidopsis thaliana. OsELF3 was required for the control of heading date under long-day conditions. Its Tos17-tagging mutants exhibited a delayed heading date phenotype only under long-day, but not short-day, conditions. OsELF3 was highly expressed in leaf blades, and the OsELF3 protein was localized in the nucleolus. An obvious diurnal rhythm of OsELF3 transcript level was observed, with a trough in the early day and a peak in the late night in wild-type plants. However, this expression pattern was disrupted in oself3 mutants. Further inves- tigations showed that the expression of OsGI and Ghd7 was up-regulated in the oself3 mutant, indicating that OsELF3 acts as a negative regulator upstream of OsGI and Ghd7 in the flowering-time control under long-day conditions. The rhythmic expression of circadian clock-related genes, including some OsPRR members, was obviously affected in oself3 mutants. Our results indicated that OsELF3 acts as a floral activator in the long-day photoperiodic pathway via its cross- talk with the circadian clock in rice.展开更多
Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the ...Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the 2013-2014 and 2014-2015 growing seasons, two winter wheat cultivars were sown on three dates(early sowing on October 1, normal so,wing on October8, and late sowing on October 15) to investigate the responses of lodging resistance, grain yield,and NUE to sowing date. No significant differences in lodging resistance, grain yield, or NUE between early and normal sowing were observed. Averaging over the two cultivars and years,postponing the sowing date significantly increased lodging resistance by 53.6% and 49.6%compared with that following early and normal sowing, respectively. Lodging resistance was improved mainly through a reduction in the culm height at the center of gravity and an increase in the tensile strength of the base internode. Late sowing resulted in similar grain yield as well as kernel weight and number of kernels per square meter, compared to early and normal sowing.Averaging over the two cultivars and years, delayed sowing resulted in a reduction in nitrogen uptake efficiency(UPE) by 11.0% and 9.9% compared to early and normal sowing, respectively,owing to reduced root length density and dry matter accumulation before anthesis. An average increase in nitrogen utilization efficiency(UTE) of 12.9% and 11.2% compared to early and normal sowing, respectively, was observed with late sowing owing to a reduction in the grain nitrogen concentration. The increase in UTE offset the reduction in UPE, resulting in equal NUEs among all sowing dates. Thus, sowing later than normal could increase lodging resistance while maintaining grain yield and NUE.展开更多
The temperate monsoon area of China is an important agricultural region but late spring frosts have frequently caused significant damage to plants there. Based on phenological data derived from the Chinese Phenologica...The temperate monsoon area of China is an important agricultural region but late spring frosts have frequently caused significant damage to plants there. Based on phenological data derived from the Chinese Phenological Observation Network (CPON), corresponding meteorological data from 12 study sites and phenological modeling, changes in flowering times of multiple woody plants and the frequency of frost occurrence were analyzed. Through these analyses, frost risk during the flowering period at each site was estimated. Results of these estimates suggested that first flowering dates (FFD) in the study area advanced significantly from 1963 to 2009 at an average rate of -1.52 days/decade in North-east China (P〈0.01) and -2.22 days/decade (P〈0.01) in North China. Over the same period, the number of frost days in spring decreased and the last frost days advanced across the study area. Considering both flowering phenology and occurrence of frost, the frost risk index, which measures the percentage of species exposed to frost during the flowering period in spring, exhibited a decreasing trend of -0.37% per decade (insignificant) in Northeast China and -1.80% per decade (P〈0.01) in North China, implying that frost risk has reduced over the past half century. These conclusions provide important information to agriculture and forest managers in devising frost protection schemes in the region.展开更多
Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions an...Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions and examine the relationship between KW, grain filling parameters, and weather factors. Maize was sown on eight sowing dates(SD) at 15–20-day intervals from mid-March to mid-July during 2012 and 2013 in the North China Plain. With sowing date delay, KW increased initially and later declined, and the greatest KW was obtained at SD6 in both years. The increased KW at SD6 was attributed mainly to kernel growth rate(Gmean), and effective grain-filling period(P). Variations in temperature and radiation were the primary factors that influenced KW and grain-filling parameters. When the effective cumulative temperature(AT) and radiation(Ra)during grain filling were 950 °C and 1005.4 MJ m-2, respectively, P and KW were greatest. High temperatures(daily maximum temperature [Tmax] > 30.2 °C) during grain filling under early sowing conditions, or low temperatures(daily minimum temperature [Tmin] < 20.7 °C) under late sowing conditions combined with high diurnal temperature range(Tmax-min> 7.1 °C) decreased kernel growth rate and ultimately final KW. When sowing was performed from May 25 through June 27, higher KW and yield of maize were obtained. We conclude that variations in environmental conditions(temperature and radiation) during grain filling markedly affect growth rate and duration of grain filling and eventually affect kernel weight and yield of maize.展开更多
Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)...Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recomme展开更多
This study used time-series of global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) datasets at a spatial resolution of 8 km and 15-d interval to investigate the spat...This study used time-series of global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) datasets at a spatial resolution of 8 km and 15-d interval to investigate the spatial patterns of cropland phenology in China. A smoothing algorithm based on an asymmetric Gaussian function was first performed on NDVI dataset to minimize the effects of anomalous values caused by atmospheric haze and cloud contamination. Subsequent processing for identifying cropping systems and extracting phenological parameters, the starting date of growing season (SGS) and the ending date of growing season (EGS) was based on the smoothed NVDI time-series data. The results showed that the cropping systems in China became complex as moving from north to south of China. Under these cropping systems, the SGS and EGS for the first growing season varied largely over space, and those regions with multiple cropping systems generally presented a significant advanced SGS and EGS than the regions with single cropping patterns. On the contrary, the phenological events of the second growing season including both the SGS and EGS showed little difference between regions. The spatial patterns of cropping systems and phenology in Chinese cropland were highly related to the geophysical environmental factors. Several anthropogenic factors, such as crop variety, cultivation levels, irrigation, and fertilizers, could profoundly influence crop phenological status. How to discriminate the impacts of biophysical forces and anthropogenic drivers on phenological events of cultivation remains a great challenge for further studies.展开更多
Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to me...Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.展开更多
Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci(QTLs)have been identified. The rice(Oryza sativa L.) cultivars in the Heilongjiang Province, the northernmost...Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci(QTLs)have been identified. The rice(Oryza sativa L.) cultivars in the Heilongjiang Province, the northernmost region of China,have to flower extremely early to fulfill their life cycle.However, the critical genes or different gene combinations controlling early flowering in this region have not been determined. QTL and candidate gene analysis revealed that Hd2/Ghd7.1/Os PRR37 plays a major role in controlling rice distribution in Heilongjiang. Further association analysis with a collection of rice cultivars demonstrated that another three major QTL genes(Hd4/Ghd7, Hd5/DTH8/Ghd8, and Hd1)also participate in regulating heading date under natural long day(LD) conditions. Hd2/Ghd7.1/Os PRR37 and Hd4/Ghd7 are two major QTLs and function additively. With the northward rice cultivation, the Hd2/Ghd7.1/Os PRR37 and Hd4/Ghd7 haplotypes became non-functional alleles. Hd1 might be non-functional in most Heilongjiang rice varieties,implying that recessive hd1 were selected during local rice breeding. Non-functional Hd5/DTH8/Ghd8 is very rare, but constitutes a potential target for breeding extremely early flowering cultivars. Our results indicated that diverse genetic combinations of Hd1, Hd2, Hd4, and Hd5 determined the different distribution of rice varieties in this northernmost province of China.展开更多
The objective of this study was to investigate the genetic diversity of barley accessions. Additionally, association trait analysis was conducted for grain yield under salinity, heading date and plant height. For this...The objective of this study was to investigate the genetic diversity of barley accessions. Additionally, association trait analysis was conducted for grain yield under salinity, heading date and plant height. For this purpose, 48 barley genotypes were analyzed with 22 microsatellite simple sequence repeat (SSR) markers. Four of the 22 markers (Bmac316, scssr03907, HVM67 and Bmag770) were able to differentiate all barley genotypes. Cluster and principal coordinate analysis allowed a clear grouping between countries from the same region. The genotypes used in this study have been evaluated for agronomic performance in different environments. Conducting association analysis for grain yield under salinity conditions using TASSEL software revealed a close association of the marker Bmag749 (2H, bin 13) in two different environments with common significant alleles (175, 177), whereas the HVHOTR1 marker (2H, bin 3) was only significant in Sakhar Egypt with alleles size being 158 and 161. Heading date also showed an association with scssr03907 through the common significant specific allele 111 and EBmac0415 markers in three different agro climatic locations, whereas HVCMA, scssr00103 and HVM67 were linked to heading date in the Egyptian environment only. The plant height association analysis revealed significant markers Bmag770 via the significant allele 152 and scssr09398.展开更多
文摘Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole- genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is respon- sible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day condi- tions, and are adapted to the northernmost regions of rice cultivation, up to 53~ N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and GhdT/ Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201003021)the Project of Conservation and Utilization of Agricultural Wild Plants of the Ministry of Agriculture of Chinathe National High-Tech Research and Development(863)Program of China(2012AA101103)
文摘Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehdl, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehdl, Hd3a and RFT1 under long-day conditions.
文摘In 1991, the Yunnan Provincial Institute of Cultural Relics and Archaeology, in co-operation with other institutions, carried out the secondary excavation in the Jiangchuan Lijiashan cemetery. The 60 excavated tombs are all earth-pit graves without clear data on coffins and fall into three types: large-, medium- and small-sized. Among the grave goods are bronzes, irons, gold- and silver-wares, jade, agate and other precious stone artifacts, bamboo articles and wooden objects. The bronzes and irons include mainly implements of production and weapons, and also instruments of funeral ritual. According to the stratigraphical evidence of the cemetery and changes in the combination of funeral objects, the tombs can be divided into four phases. The first phase contains 28 mediun and small-sized tombs with irons as the main grave goods and without bronze-and-iron compound objects, and goes back to the mid Western Han period, prior to Wudi's reign. The second phase is represented by Tombs M47 and MS1, both furnished with a second-tier platform and containing a two-person joint burial. The large-sized tomb yielded bronze weapons, hoes, spades, and a tomb-figurine of a male holding an umbrella. The medium and small tombs are furnished chiefly with bronzes, and also a few bronze-and-iron compound articles. They date from the mid and late Western Han period. The third phase is represented by Tomb M82 and features the increase of bronze-and-silver ware. The large-sized tomb contains less bronze-ware; in the medium and small graves, bronze-and-iron ware, irons, horse trappings and lacquer-ware occur commonly. They can be assigned to the time from the late Western Han to the early Eastern Han period. The fourth phase comprises only three tombs, M49 and other two. Their funeral objects feature the sharp discrease of Dian-style articles and the emergence of Han-style objects,such as fu cauldrons, zeng steamers and incense burners. They go back to the earlier Eastern Han period.
基金This work was supported by National Natural Science Foundation of China Grant 30970172, 863 Project Grant 2012AA10A303, and the Program for New Century Excellent Talents in University.
文摘Heading date is a critical trait that determines cropping seasons and regional adaptability in rice (Oryza sativa). Research efforts during the last decade have identified some important photoperiod pathway genes that are conserved between Arabidopsis and rice. In this study, we identified a novel gene, Oryza sativa ELF3 (OsELF3), which is a putative homolog of the ELF3 gene in Arabidopsis thaliana. OsELF3 was required for the control of heading date under long-day conditions. Its Tos17-tagging mutants exhibited a delayed heading date phenotype only under long-day, but not short-day, conditions. OsELF3 was highly expressed in leaf blades, and the OsELF3 protein was localized in the nucleolus. An obvious diurnal rhythm of OsELF3 transcript level was observed, with a trough in the early day and a peak in the late night in wild-type plants. However, this expression pattern was disrupted in oself3 mutants. Further inves- tigations showed that the expression of OsGI and Ghd7 was up-regulated in the oself3 mutant, indicating that OsELF3 acts as a negative regulator upstream of OsGI and Ghd7 in the flowering-time control under long-day conditions. The rhythmic expression of circadian clock-related genes, including some OsPRR members, was obviously affected in oself3 mutants. Our results indicated that OsELF3 acts as a floral activator in the long-day photoperiodic pathway via its cross- talk with the circadian clock in rice.
基金supported by the National Basic Research Program of China (2015CB150404)Shandong Province Higher Education Science and Technology Program (J15LF07)Youth Science and Technology Innovation Foundation of Shandong Agricultural University (2014-2)
文摘Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the 2013-2014 and 2014-2015 growing seasons, two winter wheat cultivars were sown on three dates(early sowing on October 1, normal so,wing on October8, and late sowing on October 15) to investigate the responses of lodging resistance, grain yield,and NUE to sowing date. No significant differences in lodging resistance, grain yield, or NUE between early and normal sowing were observed. Averaging over the two cultivars and years,postponing the sowing date significantly increased lodging resistance by 53.6% and 49.6%compared with that following early and normal sowing, respectively. Lodging resistance was improved mainly through a reduction in the culm height at the center of gravity and an increase in the tensile strength of the base internode. Late sowing resulted in similar grain yield as well as kernel weight and number of kernels per square meter, compared to early and normal sowing.Averaging over the two cultivars and years, delayed sowing resulted in a reduction in nitrogen uptake efficiency(UPE) by 11.0% and 9.9% compared to early and normal sowing, respectively,owing to reduced root length density and dry matter accumulation before anthesis. An average increase in nitrogen utilization efficiency(UTE) of 12.9% and 11.2% compared to early and normal sowing, respectively, was observed with late sowing owing to a reduction in the grain nitrogen concentration. The increase in UTE offset the reduction in UPE, resulting in equal NUEs among all sowing dates. Thus, sowing later than normal could increase lodging resistance while maintaining grain yield and NUE.
基金Key Project of National Natural Science Foundation of China,No.41030101 National Basic Research Program of China,No.2012CB955304+1 种基金 National Natural Science Foundation of China,No.41171043 "Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues"of the Chinese Academy of Sciences,No.XDA05090301
文摘The temperate monsoon area of China is an important agricultural region but late spring frosts have frequently caused significant damage to plants there. Based on phenological data derived from the Chinese Phenological Observation Network (CPON), corresponding meteorological data from 12 study sites and phenological modeling, changes in flowering times of multiple woody plants and the frequency of frost occurrence were analyzed. Through these analyses, frost risk during the flowering period at each site was estimated. Results of these estimates suggested that first flowering dates (FFD) in the study area advanced significantly from 1963 to 2009 at an average rate of -1.52 days/decade in North-east China (P〈0.01) and -2.22 days/decade (P〈0.01) in North China. Over the same period, the number of frost days in spring decreased and the last frost days advanced across the study area. Considering both flowering phenology and occurrence of frost, the frost risk index, which measures the percentage of species exposed to frost during the flowering period in spring, exhibited a decreasing trend of -0.37% per decade (insignificant) in Northeast China and -1.80% per decade (P〈0.01) in North China, implying that frost risk has reduced over the past half century. These conclusions provide important information to agriculture and forest managers in devising frost protection schemes in the region.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201203096)the National Key Technology R&D Program of China(Nos.2013BAD07B00 and 2013BAD08B00)the China Agriculture Research System(No.CARS-02)
文摘Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions and examine the relationship between KW, grain filling parameters, and weather factors. Maize was sown on eight sowing dates(SD) at 15–20-day intervals from mid-March to mid-July during 2012 and 2013 in the North China Plain. With sowing date delay, KW increased initially and later declined, and the greatest KW was obtained at SD6 in both years. The increased KW at SD6 was attributed mainly to kernel growth rate(Gmean), and effective grain-filling period(P). Variations in temperature and radiation were the primary factors that influenced KW and grain-filling parameters. When the effective cumulative temperature(AT) and radiation(Ra)during grain filling were 950 °C and 1005.4 MJ m-2, respectively, P and KW were greatest. High temperatures(daily maximum temperature [Tmax] > 30.2 °C) during grain filling under early sowing conditions, or low temperatures(daily minimum temperature [Tmin] < 20.7 °C) under late sowing conditions combined with high diurnal temperature range(Tmax-min> 7.1 °C) decreased kernel growth rate and ultimately final KW. When sowing was performed from May 25 through June 27, higher KW and yield of maize were obtained. We conclude that variations in environmental conditions(temperature and radiation) during grain filling markedly affect growth rate and duration of grain filling and eventually affect kernel weight and yield of maize.
基金supported by the earmarked fund for China Agriculture Research System (CARS-0301-24)the National Natural Science Foundation of China (31771727)+5 种基金the National Key Technology R&D Program of China (2015BAD23B04-2)The research project was also supported by the Shanxi Scholarship Council,China (2015Key 4)the Shanxi Science and Technology Innovation Team Project,China (201605D131041)the Jinzhong Science and Technology Plan Project,China (Y172007-2)the Sanjin Scholar Support Special Funds,Chinathe Special Fund for Agro-scientific Research in the Public Interest,China (201503120)
文摘Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recomme
基金supported by the National Natural Science Foundation of China (40930101,40971218)the 948 Program,Ministry of Agriculture of China (2009-Z31)the Foundation for National Non-Profit Scientific Institution,Ministry of Finance of China (IARRP-2010-2)
文摘This study used time-series of global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) datasets at a spatial resolution of 8 km and 15-d interval to investigate the spatial patterns of cropland phenology in China. A smoothing algorithm based on an asymmetric Gaussian function was first performed on NDVI dataset to minimize the effects of anomalous values caused by atmospheric haze and cloud contamination. Subsequent processing for identifying cropping systems and extracting phenological parameters, the starting date of growing season (SGS) and the ending date of growing season (EGS) was based on the smoothed NVDI time-series data. The results showed that the cropping systems in China became complex as moving from north to south of China. Under these cropping systems, the SGS and EGS for the first growing season varied largely over space, and those regions with multiple cropping systems generally presented a significant advanced SGS and EGS than the regions with single cropping patterns. On the contrary, the phenological events of the second growing season including both the SGS and EGS showed little difference between regions. The spatial patterns of cropping systems and phenology in Chinese cropland were highly related to the geophysical environmental factors. Several anthropogenic factors, such as crop variety, cultivation levels, irrigation, and fertilizers, could profoundly influence crop phenological status. How to discriminate the impacts of biophysical forces and anthropogenic drivers on phenological events of cultivation remains a great challenge for further studies.
基金Supported by the National Natural Science Foundation of China(41401104)Natural Science Foundation of Hebei Province(D2015302017)+1 种基金China Postdoctoral Science Foundation Funded Project(2015M570167)Science and Technology Planning Project of Hebei Academy of Science(16101)
文摘Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.
基金supported by the Hundred-Talent Program of the Chinese Academy of SciencesNational Natural Science Foundation of China(31070255,31371588)+1 种基金Excellent Academic Leaders of Harbin(RC2014XK002003)the High Tech Program of Ministry of Science and Technology of China(2014AA10A602-5)
文摘Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci(QTLs)have been identified. The rice(Oryza sativa L.) cultivars in the Heilongjiang Province, the northernmost region of China,have to flower extremely early to fulfill their life cycle.However, the critical genes or different gene combinations controlling early flowering in this region have not been determined. QTL and candidate gene analysis revealed that Hd2/Ghd7.1/Os PRR37 plays a major role in controlling rice distribution in Heilongjiang. Further association analysis with a collection of rice cultivars demonstrated that another three major QTL genes(Hd4/Ghd7, Hd5/DTH8/Ghd8, and Hd1)also participate in regulating heading date under natural long day(LD) conditions. Hd2/Ghd7.1/Os PRR37 and Hd4/Ghd7 are two major QTLs and function additively. With the northward rice cultivation, the Hd2/Ghd7.1/Os PRR37 and Hd4/Ghd7 haplotypes became non-functional alleles. Hd1 might be non-functional in most Heilongjiang rice varieties,implying that recessive hd1 were selected during local rice breeding. Non-functional Hd5/DTH8/Ghd8 is very rare, but constitutes a potential target for breeding extremely early flowering cultivars. Our results indicated that diverse genetic combinations of Hd1, Hd2, Hd4, and Hd5 determined the different distribution of rice varieties in this northernmost province of China.
基金the Generation Challenge Program Project, and the North Africa Regional Program
文摘The objective of this study was to investigate the genetic diversity of barley accessions. Additionally, association trait analysis was conducted for grain yield under salinity, heading date and plant height. For this purpose, 48 barley genotypes were analyzed with 22 microsatellite simple sequence repeat (SSR) markers. Four of the 22 markers (Bmac316, scssr03907, HVM67 and Bmag770) were able to differentiate all barley genotypes. Cluster and principal coordinate analysis allowed a clear grouping between countries from the same region. The genotypes used in this study have been evaluated for agronomic performance in different environments. Conducting association analysis for grain yield under salinity conditions using TASSEL software revealed a close association of the marker Bmag749 (2H, bin 13) in two different environments with common significant alleles (175, 177), whereas the HVHOTR1 marker (2H, bin 3) was only significant in Sakhar Egypt with alleles size being 158 and 161. Heading date also showed an association with scssr03907 through the common significant specific allele 111 and EBmac0415 markers in three different agro climatic locations, whereas HVCMA, scssr00103 and HVM67 were linked to heading date in the Egyptian environment only. The plant height association analysis revealed significant markers Bmag770 via the significant allele 152 and scssr09398.