期刊文献+
共找到2,220篇文章
< 1 2 111 >
每页显示 20 50 100
教师数据素养的构成、功用与发展策略 被引量:44
1
作者 阮士桂 郑燕林 《现代远距离教育》 CSSCI 2016年第1期60-65,共6页
大数据时代的到来使教师可较以往获取更全面多元的教育数据,然而拥有数据不等于能够使用数据改进教学,为能推进数据在教育教学中的有效应用,以充分改进教师教学实践、促进学生个性化成长,教师的数据使用能力,即教师数据素养显得尤为重... 大数据时代的到来使教师可较以往获取更全面多元的教育数据,然而拥有数据不等于能够使用数据改进教学,为能推进数据在教育教学中的有效应用,以充分改进教师教学实践、促进学生个性化成长,教师的数据使用能力,即教师数据素养显得尤为重要。基于现有的相关研究,从教师数据素养的内涵、功用和发展路径等三方面较为系统地探讨教师数据素养的基本脉络,认为教师数据素养的核心内涵在于数据处理的基本能力与数据的教学应用能力;教师数据素养在促进基于数据的教学思维变革、教学实践改进、教学交流与技术整合等方面具有重要功用;最后从政策引导、能力培育、数据系统优化、数据文化建设、服务支撑体系建构等方面探析了教师数据素养的发展路径,以期为大数据时代下教师专业的发展与完善、推进数据在教学中的有效应用等方面提供有益参考。 展开更多
关键词 教师数据素养 基于数据 教学改进 大数据
下载PDF
基于数据的生产过程调度方法研究综述 被引量:39
2
作者 刘民 《自动化学报》 EI CSCD 北大核心 2009年第6期785-806,共22页
生产过程调度是自动化、工业工程和管理工程等领域的热点研究方向.迄今,在生产过程调度方法研究上已取得很多成果,其主要涉及生产过程调度问题建模和优化方法.本文在对常用生产过程调度方法的国内外研究状况进行简要综述的基础上,主要... 生产过程调度是自动化、工业工程和管理工程等领域的热点研究方向.迄今,在生产过程调度方法研究上已取得很多成果,其主要涉及生产过程调度问题建模和优化方法.本文在对常用生产过程调度方法的国内外研究状况进行简要综述的基础上,主要针对复杂生产过程调度问题,论述了基于数据的生产过程调度方法的研究背景、涵义和研究现状. 展开更多
关键词 生产过程调度 综述 基于数据 建模 优化
下载PDF
基于数据的决策方法综述 被引量:30
3
作者 王红卫 祁超 +2 位作者 魏永长 李彬 朱松 《自动化学报》 EI CSCD 北大核心 2009年第6期820-833,共14页
现代的决策问题与传统环境相比具有两个特点,首先是系统自动化水平的提高带来的大量原始数据,另外则是由于现实决策问题的复杂性和不确定性导致的机理模型无法准确建立.面对这样的特点,传统的基于机理模型的决策方法无法得到有效应用,于... 现代的决策问题与传统环境相比具有两个特点,首先是系统自动化水平的提高带来的大量原始数据,另外则是由于现实决策问题的复杂性和不确定性导致的机理模型无法准确建立.面对这样的特点,传统的基于机理模型的决策方法无法得到有效应用,于是,大量的研究工作围绕基于数据的决策方法展开.本文根据决策问题的性质从三个方面综述了当前被普遍关注和应用的基于数据的决策方法:分类方法、决策分析方法和优化方法,针对各种具体方法,总结了该方法的特征、发展过程以及前景. 展开更多
关键词 基于数据 决策 分类 决策分析 优化
下载PDF
Data-based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks 被引量:16
4
作者 Haowei Lin Bo Zhao +1 位作者 Derong Liu Cesare Alippi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期954-964,共11页
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa... In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network data-based fault tolerant control(FTC) particle swarm optimization(PSO)
下载PDF
Data-Based Predictive Control for Networked Nonlinear Systems with Packet Dropout and Measurement Noise 被引量:12
5
作者 PANG Zhonghua LIU Guoping +1 位作者 ZHOU Donghua SUN Dehui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1072-1083,共12页
In this paper, the data-based control problem is investigated for a class of networked nonlinear systems with measurement noise as well as packet dropouts in the feedback and forward channels. The measurement noise an... In this paper, the data-based control problem is investigated for a class of networked nonlinear systems with measurement noise as well as packet dropouts in the feedback and forward channels. The measurement noise and the number of consecutive packet dropouts in both channels are assumed to be random but bounded. A data-based networked predictive control method is proposed, in which a sequence of control increment predictions are calculated in the controller based on the measured output error, and based on the control increment predictions received by the actuator, a proper control action is obtained and applied to the plant according to the real-time number of consecutive packet dropouts at each sampling instant. Then the stability analysis is performed for the networked closedloop system. Finally, the effectiveness of the proposed method is illustrated by a numerical example. 展开更多
关键词 data-based control measurement noise networked control systems (NCSs) packet dropout predictive control
原文传递
Combination of Model-based Observer and Support Vector Machines for Fault Detection of Wind Turbines 被引量:11
6
作者 Nassim Laouti Sami Othman +1 位作者 Mazen Alamir Nida Sheibat-Othman 《International Journal of Automation and computing》 EI CSCD 2014年第3期274-287,共14页
Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach ... Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind t 展开更多
关键词 Fault detection and isolation wind turbine Kalman-like observer support vector machines data-based classification
原文传递
基于数据的复杂制造过程调度 被引量:6
7
作者 吴启迪 乔非 +1 位作者 李莉 吴莹 《自动化学报》 EI CSCD 北大核心 2009年第6期807-813,共7页
现代制造企业规模庞大、过程复杂等特征给制造过程的调度决策带来了极大的挑战.一方面,使用传统方法建立指导生产过程调度的精确数学模型变得越来越困难;另一方面,因缺乏准确、及时的模型参数而往往导致低下的模型使用效果.在此情况下,... 现代制造企业规模庞大、过程复杂等特征给制造过程的调度决策带来了极大的挑战.一方面,使用传统方法建立指导生产过程调度的精确数学模型变得越来越困难;另一方面,因缺乏准确、及时的模型参数而往往导致低下的模型使用效果.在此情况下,基于数据–信息–知识–决策的信息提炼轨迹,有必要探寻新的基于数据的复杂制造过程的调度理论与方法.在综述国内外相关研究的基础上,提出了由数据层与模型层构成的基于数据的复杂制造过程调度架构,并对该结构框架下的相关理论、方法及实施技术进行了探讨. 展开更多
关键词 基于数据 调度 复杂制造过程 调度框架 调度模型
下载PDF
Recent Progress on Data-Based Optimization for MineralProcessing Plants 被引量:9
8
作者 Jinliang Ding Cuie Yang Tianyou Chai 《Engineering》 SCIE EI 2017年第2期183-187,共5页
In the globalized market environment, increasingly significant economic and environmental factors withincomplex industrial plants impose importance on the optimization of global production indices; such opti-mization ... In the globalized market environment, increasingly significant economic and environmental factors withincomplex industrial plants impose importance on the optimization of global production indices; such opti-mization includes improvements in production efficiency, product quality, and yield, along with reductionsof energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelli-gence optimization methods and technologies in improving the performance of global production indicesin mineral processing. First, we provide the problem description. Next, we summarize recent progress indata-based optimization for mineral processing plants. This optimization consists of four layers: optimiza-tion of the target values for monthly global production indices, optimization of the target values for dailyglobal production indices, optimization of the target values for operational indices, and automation systemsfor unit processes. We briefly overview recent progress in each of the different layers. Finally, we point outopportunities for future works in data-based optimization for mineral processing plants. 展开更多
关键词 data-based OPTIMIZATION Plant-wide GLOBAL OPTIMIZATION MINERAL processing SURVEY
下载PDF
基于数据的湿法冶金全流程操作量优化设定补偿方法 被引量:8
9
作者 李康 王福利 +1 位作者 何大阔 贾润达 《自动化学报》 EI CSCD 北大核心 2017年第6期1047-1055,共9页
湿法冶金过程具有反应机理复杂、工艺流程长、工序众多等特点,由于模型误差等因素,基于模型得到的生产过程最优工作点不是实际生产过程的最优工作点.如何保持湿法冶金生产流程运行在经济效益最优的状态成为生产优化控制的难点.本文提出... 湿法冶金过程具有反应机理复杂、工艺流程长、工序众多等特点,由于模型误差等因素,基于模型得到的生产过程最优工作点不是实际生产过程的最优工作点.如何保持湿法冶金生产流程运行在经济效益最优的状态成为生产优化控制的难点.本文提出了一种基于数据的湿法冶金过程操作量优化设定补偿方法.该方法在基于模型得到的最优工作点基础上,采用即时学习(Just-in-time learning,JITL)的思想,在当前工作点附近利用历史数据建立操作量补偿值和经济效益增量的相关模型,优化求解在当前工作点下,使经济效益增量最大化的操作量补偿值,施加到生产流程,并在新工作点进行迭代补偿.将所提出的方法仿真应用于某精炼厂的湿法冶金生产流程,仿真结果验证了所提出方法的有效性. 展开更多
关键词 湿法冶金 基于数据 优化补偿 即时学习
下载PDF
Actor-Critic框架下的数据驱动异步电机离线参数辨识方法 被引量:8
10
作者 漆星 张倩 《电工技术学报》 EI CSCD 北大核心 2019年第9期1875-1885,共11页
电动汽车用电机的参数辨识可以使电机在任意转速下尽可能输出更高的转矩及效率,是优化电机输出性能的重要手段。传统的基于模型驱动的参数辨识方法的缺点为易受模型误差的影响、抗干扰能力差以及无法实现全转速范围内的转矩最优。鉴于... 电动汽车用电机的参数辨识可以使电机在任意转速下尽可能输出更高的转矩及效率,是优化电机输出性能的重要手段。传统的基于模型驱动的参数辨识方法的缺点为易受模型误差的影响、抗干扰能力差以及无法实现全转速范围内的转矩最优。鉴于上述缺点,该文研究了一种完全基于实际数据的电动汽车用异步电机离线参数辨识方法,对电机的转子电阻和励磁电感在任意转速下进行了优化,从而使电机能够在特定转速和特定电流下输出最优转矩。为达到电机在特定转速和电流下输出转矩最优的目的,研究了一种基于Actor-Critic框架的电动汽车用异步电机离线参数辨识方法,确定了框架中的观测、奖励和动作的设计。实验证明相对于传统参数辨识方法,该文方法具有更高的精确性和鲁棒性,同时确保了电动汽车用异步电机在任意转速下的输出转矩最优。 展开更多
关键词 异步电机参数辨识数据驱动Actor-Critic 框架
下载PDF
基于系统动力学的数据化作战指挥模式分析 被引量:8
11
作者 张英 李江涛 《指挥控制与仿真》 2019年第2期31-36,共6页
数据化作战指挥模式是信息时代的一种作战指挥新模式。通过分析数据化作战指挥模式与传统作战指挥模式的比较,明晰数据化作战指挥模式的特点及工作流程,运用系统动力学相关理论和方法,构建数据化作战指挥模型,比较对抗环境中不同的模拟... 数据化作战指挥模式是信息时代的一种作战指挥新模式。通过分析数据化作战指挥模式与传统作战指挥模式的比较,明晰数据化作战指挥模式的特点及工作流程,运用系统动力学相关理论和方法,构建数据化作战指挥模型,比较对抗环境中不同的模拟结果,探讨数据化作战指挥模式的优势,为指挥员科学指挥作战行动提供强有力的理论支撑,从而提高部队作战效能。 展开更多
关键词 系统动力学 数据化 作战指挥模式
下载PDF
Digital Servo Control of a Robotic Excavator 被引量:4
12
作者 GU Jun SEWARD Derek 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期190-197,共8页
An electro-hydraulic control system is designed and implemented for a robotic excavator known as the Lancaster University Computerised and Intelligent Excavator (LUCIE). The excavator is being developed to autonomou... An electro-hydraulic control system is designed and implemented for a robotic excavator known as the Lancaster University Computerised and Intelligent Excavator (LUCIE). The excavator is being developed to autonomously dig trenches without human intervention. Since the behavior of the excavator arm is dominated by the nonlinear dynamics of the hydraulic actuators and by the large and unpredictable external disturbances when digging, it is difficult to provide adequate accurate, quick and smooth movement under traditional control methodology, e.g., PI/PID, which is comparable with that of an average human operator. The data-based dynamic models are developed utilizing the simplified refined instrumental variable (SRIV) identification algorithm to precisely describe the nonlinear dynamical behaviour of the electro-hydraulic actuation system. Based on data-based model and proportional-integral-plus (PIP) methodology, which is a non-minimal state space method of control system design based on the true digital control (TDC) system design philosophy, a novel control system is introduced to drive the excavator arm accurately, quickly and smoothly along the desired path. The performance of simulation and field tests which drive the bucket along straight lines both demonstrate the feasibility and validity of the proposed control scheme. 展开更多
关键词 robotic excavator nonlinear dynamics data-based model true digital control (TDC) proportional-integral-plus (PIP)
下载PDF
Virtual sensing method for monitoring vibration of continuously variable configuration structures using long short-term memory networks 被引量:4
13
作者 Zhenjiang YUE Li LIU +1 位作者 Teng LONG Yuanchen MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期244-254,共11页
Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in ... Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures. 展开更多
关键词 data-based METHOD RECURRENT neural NETWORKS Time-varying structure VIBRATION MONITORING Virtual sensing
原文传递
The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing
14
作者 Mengxin BAI Wupeng DU +2 位作者 Zhixin HAO Liang ZHANG Pei XING 《Frontiers of Earth Science》 SCIE CSCD 2024年第3期637-648,共12页
It is crucial to investigate the characteristics of fire danger in the areas around Beijing to increase the accuracy of fire danger monitoring,forecasting,and management.Using meteorological data from 17 national mete... It is crucial to investigate the characteristics of fire danger in the areas around Beijing to increase the accuracy of fire danger monitoring,forecasting,and management.Using meteorological data from 17 national meteorological stations in the areas around Beijing from 1981−2021,this study calculated the fire weather index(FWI)and analyzed its spatiotemporal characteristics.It was found that the high and low fire danger periods were in April−May and July−August,with spatial patterns of“decrease in the northwest−increase in the southeast”and a significant increase throughout the areas around Beijing,respectively.Next,the contributions of different meteorological factors were quantified by the multiple regression method.We found that during the high fire danger period,the northern and southern parts were affected by precipitation and minimum relative humidity,respectively.However,most areas were influenced by wind speed during the low fire danger period.Finally,comparing with the FWI characteristics under different SSP scenarios,we found that the FWI decreased during high fire danger period and increased during low fire danger period under different SSP scenarios(i.e.,SSP245,SSP585)for periods of 2021−2050,2071−2100,2021−2100,except for SSP245 in 2071−2100 with an increasing trend both in high and low fire danger periods.This study implies that there is a higher probability of FWI in the low fire danger period,threatening the ecological environment and human health.Therefore,it is necessary to enhance research on fire danger during the low fire danger period to improve the ability to predict summer fire danger. 展开更多
关键词 meteorological data-based fire danger areas around Beijing climate characteristics SSP scenarios
原文传递
Data-Based Filters for Non-Gaussian Dynamic Systems With Unknown Output Noise Covariance
15
作者 Elham Javanfar Mehdi Rahmani 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期866-877,共12页
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova... This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches. 展开更多
关键词 data-based filter maximum likelihood estimation unknown covariance weighted maximum likelihood estimation weighted sum-of-norms clustering
下载PDF
Optimal Tracking Control for a Class of Unknown Discrete-time Systems with Actuator Saturation via Data-based ADP Algorithm 被引量:4
16
作者 SONG Rui-Zhuo XIAO Wen-Dong SUN Chang-Yin 《自动化学报》 EI CSCD 北大核心 2013年第9期1413-1420,共8页
为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍... 为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。 展开更多
关键词 最优跟踪控制 离散时间系统 饱和执行器 DP算法 控制方案 神经网络 性能指标 系统动力学
下载PDF
Machine learning modeling for proton exchange membrane fuel cell performance 被引量:4
17
作者 Adithya Legala Jian Zhao Xianguo Li 《Energy and AI》 2022年第4期1-16,共16页
Proton exchange membrane fuel cell (PEMFC) is considered essential for climate change mitigation, and a fast and accurate model is necessary for its control and operation in practical applications. In this study, vari... Proton exchange membrane fuel cell (PEMFC) is considered essential for climate change mitigation, and a fast and accurate model is necessary for its control and operation in practical applications. In this study, various machine learning methods are used to develop data-based models for PEMFC performance attributes and internal states. Techniques such as Artificial Neural Network (ANN) and Support Vector Machine Regressor (SVR) are used to predict the cell voltage, membrane resistance, and membrane hydration level for various operating conditions. Varying input features such as cell current, temperature, reactant pressures, and humidity are introduced to evaluate the accuracy of the model, especially under extreme conditions. Two different sets of data are considered in this study, which are acquired from, a physics-based semiempirical model and a 1-D reduced-dimension Computational Fluid Dynamics model, respectively. The aspect of data preprocessing and hyperparameter tuning procedures are investigated that are extensively used to calibrate the artificial neural network layers and support vector regressor to predict the fuel cell attributes. ANN clearly shows an advantage in comparison with SVR, especially on a multivariable output regression. However, the SVR is advantageous to model simple regressions as it greatly reduces the level of computation without sacrificing accuracy. Data-based models for PEMFC are successfully developed on both the data sets by adapting advanced modeling techniques and calibration procedures such as ANN incorporating the dropout technique, resulting in an R2 ≥ 0.99 for all the predicted variables, demonstrating the ability to build accurate data-based models solely on data from validated physics-based models, reducing the dependency on extensive experimentation. 展开更多
关键词 Fuel cell Machine learning Artificial neural network Support vector machine regressor data-based models
原文传递
重塑洛杉矶河:连接公共开放空间的51英里 被引量:3
18
作者 杰西卡·M·汉森 马克·汉娜 +3 位作者 冉玲于(翻译) 嵇扬(翻译) 张晨希(翻译) 丁祎(翻译) 《景观设计学(中英文)》 CSCD 2021年第3期58-72,共15页
因其特殊的混凝土河道,洛杉矶河可能是世界上最具辨识度的河流之一。随着洛杉矶地区的城市化逐渐推进,这条河流为降低洪水发生风险而被渠化,在一些人眼中,这是建筑工程史上的丰功伟绩,而在另一些人眼中则是一场生态灾难。洛杉矶河流经1... 因其特殊的混凝土河道,洛杉矶河可能是世界上最具辨识度的河流之一。随着洛杉矶地区的城市化逐渐推进,这条河流为降低洪水发生风险而被渠化,在一些人眼中,这是建筑工程史上的丰功伟绩,而在另一些人眼中则是一场生态灾难。洛杉矶河流经17个城市,其中不乏洛杉矶县境内环境最恶劣、公园最稀缺、服务水平最差的一些社区。在河道的通行权范围内有超过930多公顷的公共用地可以用来重塑洛杉矶河,这将会影响河道周围1.6km范围内100万人的生活。洛杉矶河总体规划由洛杉矶县主导,计划于2021年秋季完成。该规划提议建设长约51英里(约82km)相互连接的公共开放空间,其中包括一系列多效益项目,共响应了9个总体目标,从防洪韧性到房屋经济实用性,再到生态功能、艺术、教育和文化等。在这一面向未来25年的基于数据的规划中,进行了一项针对全流域的研究,致力于记录和理解与环境和社会问题相关的水质、水源地保护与洪水风险的话题。规划还提出了兼具传统与创新策略的"工具包",配置了栖息地桥梁、干旱河谷侧渠等在内的65种设计工具,旨在提升生态系统服务、形成一个欣欣向荣的城市居所和相互连接的滨河公园网络。 展开更多
关键词 流域分析 目标驱动的规划框架 基于数据 生态功能 工具包 生物多样性 洪水风险
原文传递
Data-Based Optimal Tracking of Autonomous Nonlinear Switching Systems 被引量:3
19
作者 Xiaofeng Li Lu Dong Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期227-238,共12页
In this paper,a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems.The system state is forced to track the reference signal by minimizing the performance func... In this paper,a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems.The system state is forced to track the reference signal by minimizing the performance function.First,the problem is transformed to solve the corresponding Bellman optimality equation in terms of the Q-function(also named as action value function).Then,an iterative algorithm based on adaptive dynamic programming(ADP)is developed to find the optimal solution which is totally based on sampled data.The linear-in-parameter(LIP)neural network is taken as the value function approximator.Considering the presence of approximation error at each iteration step,the generated approximated value function sequence is proved to be boundedness around the exact optimal solution under some verifiable assumptions.Moreover,the effect that the learning process will be terminated after a finite number of iterations is investigated in this paper.A sufficient condition for asymptotically stability of the tracking error is derived.Finally,the effectiveness of the algorithm is demonstrated with three simulation examples. 展开更多
关键词 Adaptive dynamic programming approximation error data-based control Q-LEARNING switching system
下载PDF
自适应JITL-PID控制器设计方法(英文) 被引量:2
20
作者 周成宇 杨鑫 《计算机与应用化学》 CAS 2017年第10期796-801,共6页
本文直接利用即时学习法(JITL)提出了一种新的自适应PID控制器的设计方法。该方法利用开环数据和闭环参考模型建立了参考数据库,并利用JITL的自适应特性以及良好的预测能力,直接利用JITL从参考数据库中选取相关数据集获得自适应PID控制... 本文直接利用即时学习法(JITL)提出了一种新的自适应PID控制器的设计方法。该方法利用开环数据和闭环参考模型建立了参考数据库,并利用JITL的自适应特性以及良好的预测能力,直接利用JITL从参考数据库中选取相关数据集获得自适应PID控制器的参数,不需要对化工过程建立数学模型。仿真结果表明所提出自适应PID控制设计方法相较于虚拟参考反馈整定法(VRFT)具有更好的控制性能。 展开更多
关键词 即时学习法 自适应PID控制器 数据驱动 虚拟参考反馈整定
原文传递
上一页 1 2 111 下一页 到第
使用帮助 返回顶部