By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybri...By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.展开更多
Solid superacid catalyst SO4(2-)-WO3-ZrO2 was characterized by means of XRD,DTA-TG, and surface area measurement techniques. The dependence of the surface area, SO42- content of the catalyst on calcination temperature...Solid superacid catalyst SO4(2-)-WO3-ZrO2 was characterized by means of XRD,DTA-TG, and surface area measurement techniques. The dependence of the surface area, SO42- content of the catalyst on calcination temperature was measured. It was found that there is a synergy to a certain degree between SO42- and WO3 with respect to the delay of ZrO2 crystailization, the stabilization of the tetragonal ZrO2 and the enlargement of the surface area of the catalyst. The addition of WO3 is beneficial to the stabilization of SO42- and remarkably increases the stability of SO42- at high temperature.展开更多
This article proposes an integral-based event-triggered attack-resilient control method for the aircraft-on-ground(AoG) synergistic turning system with uncertain tire cornering stiffness under stochastic deception att...This article proposes an integral-based event-triggered attack-resilient control method for the aircraft-on-ground(AoG) synergistic turning system with uncertain tire cornering stiffness under stochastic deception attacks. First, a novel AoG synergistic turning model is established with synergistic reverse steering of the front and main wheels to decrease the steering angle of the AoG fuselage, thus reducing the steady-state error when it follows a path with some large curvature. Considering that the tire cornering stiffness of the front and main wheels vary during steering, a dynamical observer is designed to adaptively identify them and estimate the system state at the same time.Then, an integral-based event-triggered mechanism(I-ETM) is synthesized to reduce the transmission frequency at the observerto-controller end, where stochastic deception attacks may occur at any time with a stochastic probability. Moreover, an attackresilient controller is designed to guarantee that the closed-loop system is robust L2-stable under stochastic attacks and external disturbances. A co-design method is provided to get feasible solutions for the observer, controller, and I-ETM simultaneously. An optimization program is further presented to make a tradeoff between the robustness of the control scheme and the saving of communication resources. Finally, the low-and high-probability stochastic deception attacks are considered in the simulations. The results have illustrated that the AoG synergistic turning system with the proposed control method follows a path with some large curvature well under stochastic deception attacks. Furthermore,compared with the static event-triggered mechanisms, the proposed I-ETM has demonstrated its superiority in saving communication resources.展开更多
基金the Science Technology Foundation of Ministry of Machine_ Buildin
文摘By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.
文摘Solid superacid catalyst SO4(2-)-WO3-ZrO2 was characterized by means of XRD,DTA-TG, and surface area measurement techniques. The dependence of the surface area, SO42- content of the catalyst on calcination temperature was measured. It was found that there is a synergy to a certain degree between SO42- and WO3 with respect to the delay of ZrO2 crystailization, the stabilization of the tetragonal ZrO2 and the enlargement of the surface area of the catalyst. The addition of WO3 is beneficial to the stabilization of SO42- and remarkably increases the stability of SO42- at high temperature.
基金supported in part by the National Science Fund for Excellent Young Scholars of China (62222317)the National Natural Science Foundation of China (61973319)+4 种基金the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (61860206014)111 Project of China (B17048)Science and Technology Innovation Program of Hunan Province (2022WZ1001)the Natural Science Foundation of Changsha (kq2208287)the Postdoctoral Fund of Central South University (22022136)。
文摘This article proposes an integral-based event-triggered attack-resilient control method for the aircraft-on-ground(AoG) synergistic turning system with uncertain tire cornering stiffness under stochastic deception attacks. First, a novel AoG synergistic turning model is established with synergistic reverse steering of the front and main wheels to decrease the steering angle of the AoG fuselage, thus reducing the steady-state error when it follows a path with some large curvature. Considering that the tire cornering stiffness of the front and main wheels vary during steering, a dynamical observer is designed to adaptively identify them and estimate the system state at the same time.Then, an integral-based event-triggered mechanism(I-ETM) is synthesized to reduce the transmission frequency at the observerto-controller end, where stochastic deception attacks may occur at any time with a stochastic probability. Moreover, an attackresilient controller is designed to guarantee that the closed-loop system is robust L2-stable under stochastic attacks and external disturbances. A co-design method is provided to get feasible solutions for the observer, controller, and I-ETM simultaneously. An optimization program is further presented to make a tradeoff between the robustness of the control scheme and the saving of communication resources. Finally, the low-and high-probability stochastic deception attacks are considered in the simulations. The results have illustrated that the AoG synergistic turning system with the proposed control method follows a path with some large curvature well under stochastic deception attacks. Furthermore,compared with the static event-triggered mechanisms, the proposed I-ETM has demonstrated its superiority in saving communication resources.