为了提高实时性和准确性,提出一种改进的动态时间规整算法(Dynamic Time Warping-DTW),用于度量手势运动轨迹的相似性,实现了快速的精确动态手势识别.首先,通过Kinect2传感器实时地获取人体骨架的关节点坐标和手部的形状数据,然后构造...为了提高实时性和准确性,提出一种改进的动态时间规整算法(Dynamic Time Warping-DTW),用于度量手势运动轨迹的相似性,实现了快速的精确动态手势识别.首先,通过Kinect2传感器实时地获取人体骨架的关节点坐标和手部的形状数据,然后构造矢量特征描述手的运动轨迹,运用动态时间规整方法进行模板匹配,并对特殊手势进行精确的二次分类,实现了基于轨迹匹配的快速动态手势识别.实验证明:该方法识别准确度高,实时性好,对光照强度和复杂背景干扰有很强的鲁棒性.展开更多
绕组变形是导致变压器故障的主要原因之一,频率响应分析法是一种常用的检测绕组变形故障的方法。文中针对实际应用中,因频率响应数据解释不足导致的绕组故障诊断效果不佳、抗噪性能差和故障程度指标与实际故障程度的单调性不良等问题,...绕组变形是导致变压器故障的主要原因之一,频率响应分析法是一种常用的检测绕组变形故障的方法。文中针对实际应用中,因频率响应数据解释不足导致的绕组故障诊断效果不佳、抗噪性能差和故障程度指标与实际故障程度的单调性不良等问题,提出了基于动态时间DTW(dynamic time warping)规整路径与K最邻近算法(KNN,K⁃nearest neighbor)的变压器绕组状态判别法、基于DTW偏离度的变压器绕组故障程度表征法。通过在一台实际变压器及一台模型变压器上的运用,验证了其在绕组状态判别及绕组故障程度表征方面的性能。通过对比实验,分析了该方法在绕组状态判别中的准确性,抗噪性,以及在故障程度表征上的灵敏性与线性相关性。结果表明,在这两个案例中,与现行变压器绕组故障诊断标准相比,文中方法有更高的准确率,更能反映变压器绕组变形故障的程度,有着更好的抗噪性能。展开更多
为深入挖掘交通流数据的复杂时空特征并建立其依赖关系,提高交通流参数的预测精度,本文提出一种新的交通流量预测模型——基于注意力机制和残差网络的时空关系图卷积网络(TSARGCN)。TSARGCN对输入数据进行切片,实现多分支建模,挖掘数据...为深入挖掘交通流数据的复杂时空特征并建立其依赖关系,提高交通流参数的预测精度,本文提出一种新的交通流量预测模型——基于注意力机制和残差网络的时空关系图卷积网络(TSARGCN)。TSARGCN对输入数据进行切片,实现多分支建模,挖掘数据的时间周期性特征;引入残差网络保证网络中信息传递的完整性;利用DTW (Dynamic Time Warping)算法计算路网中节点之间交通流量序列在时间维度的相似程度大小,提出时间图的概念,结合路网结构中各节点的邻近关系,提出时空关系图的概念;基于时空关系图,在每个分支结合注意力机制分别进行图卷积和时间维度卷积,捕获交通流的时空特征及其依赖关系,实现对路网交通流量数据时空关系的建模。经过在公开数据集PEMSD4上进行实验,结果表明:TSARGCN在交通流量预测中的平均绝对误差(MAE)达到19.24,均方根误差(RMSE)达到27.09,比ARIMA(Autoregressive Integrated Moving Average model),Conv-LSTM(Convolution Long short-term memory)及ASTGCN(Attention based Spatial-temporal Graph Convolutional Network)等知名交通流量预测算法具有更高的预测精度。展开更多
为研究灰尘对光伏发电性能的影响,通过搭建的实验台采集清洁与污染光伏组串每天的发电数据,同时监测气象数据,分析积灰及天气对光伏组件发电性能的影响。结果表明,冬季PM2.5质量浓度的上升和春季沙尘暴天气的频发使得光伏组件表面灰尘...为研究灰尘对光伏发电性能的影响,通过搭建的实验台采集清洁与污染光伏组串每天的发电数据,同时监测气象数据,分析积灰及天气对光伏组件发电性能的影响。结果表明,冬季PM2.5质量浓度的上升和春季沙尘暴天气的频发使得光伏组件表面灰尘积累较多,累计发电量损失增长较快,而夏季由于降水增加,灰尘难以积聚在光伏组件上,累计发电量损失增长缓慢。此外,利用DTW(dynamic time warping)算法来寻找相似日。首先通过熵值法计算出各气象参数的权重,然后按日期逆序逐个计算出每个历史日各个气象参数对应的DTW值,再乘以其权重并相加得到历史日的综合DTW值。通过比较各历史日的综合DTW值,选出与当前日最接近的气象相似日。在避开极端天气的情况下,选择数据集中的一部分作为验证集,并对寻找相似日的判据进行优化,选取每天09:00—15:00的数据分为3个时间段进行分析,并设定平均太阳辐照度不小于600 W/m2的条件。优化后,预测模型的评价指标决定系数为0.83,均方根误差为0.22,预测效果显著提升。最后利用该算法为光伏电站制定清洗策略,经过累计发电量损失与清洗成本的对比,确定在长期不降雨情况下,电站应每28天进行一次清洗。展开更多
为提高智能家电的人机交互性,研究实现了一种基于Kinect传感器的手势识别系统,用户通过该系统可手势控制电视的多种操作功能。对常见的3种动态手势识别算法进行分析对比后,结合应用需求,重点研究了动态手势识别DTW算法。基于Kinect for ...为提高智能家电的人机交互性,研究实现了一种基于Kinect传感器的手势识别系统,用户通过该系统可手势控制电视的多种操作功能。对常见的3种动态手势识别算法进行分析对比后,结合应用需求,重点研究了动态手势识别DTW算法。基于Kinect for Windows SDK获取的手势深度图像和骨骼图像数据,采用DTW算法进行识别,最后给出了程序实现。实验表明,该方法可实现多种电视控制功能,而且具有较好的实时性和准确性。展开更多
文摘为了提高实时性和准确性,提出一种改进的动态时间规整算法(Dynamic Time Warping-DTW),用于度量手势运动轨迹的相似性,实现了快速的精确动态手势识别.首先,通过Kinect2传感器实时地获取人体骨架的关节点坐标和手部的形状数据,然后构造矢量特征描述手的运动轨迹,运用动态时间规整方法进行模板匹配,并对特殊手势进行精确的二次分类,实现了基于轨迹匹配的快速动态手势识别.实验证明:该方法识别准确度高,实时性好,对光照强度和复杂背景干扰有很强的鲁棒性.
文摘绕组变形是导致变压器故障的主要原因之一,频率响应分析法是一种常用的检测绕组变形故障的方法。文中针对实际应用中,因频率响应数据解释不足导致的绕组故障诊断效果不佳、抗噪性能差和故障程度指标与实际故障程度的单调性不良等问题,提出了基于动态时间DTW(dynamic time warping)规整路径与K最邻近算法(KNN,K⁃nearest neighbor)的变压器绕组状态判别法、基于DTW偏离度的变压器绕组故障程度表征法。通过在一台实际变压器及一台模型变压器上的运用,验证了其在绕组状态判别及绕组故障程度表征方面的性能。通过对比实验,分析了该方法在绕组状态判别中的准确性,抗噪性,以及在故障程度表征上的灵敏性与线性相关性。结果表明,在这两个案例中,与现行变压器绕组故障诊断标准相比,文中方法有更高的准确率,更能反映变压器绕组变形故障的程度,有着更好的抗噪性能。
文摘为深入挖掘交通流数据的复杂时空特征并建立其依赖关系,提高交通流参数的预测精度,本文提出一种新的交通流量预测模型——基于注意力机制和残差网络的时空关系图卷积网络(TSARGCN)。TSARGCN对输入数据进行切片,实现多分支建模,挖掘数据的时间周期性特征;引入残差网络保证网络中信息传递的完整性;利用DTW (Dynamic Time Warping)算法计算路网中节点之间交通流量序列在时间维度的相似程度大小,提出时间图的概念,结合路网结构中各节点的邻近关系,提出时空关系图的概念;基于时空关系图,在每个分支结合注意力机制分别进行图卷积和时间维度卷积,捕获交通流的时空特征及其依赖关系,实现对路网交通流量数据时空关系的建模。经过在公开数据集PEMSD4上进行实验,结果表明:TSARGCN在交通流量预测中的平均绝对误差(MAE)达到19.24,均方根误差(RMSE)达到27.09,比ARIMA(Autoregressive Integrated Moving Average model),Conv-LSTM(Convolution Long short-term memory)及ASTGCN(Attention based Spatial-temporal Graph Convolutional Network)等知名交通流量预测算法具有更高的预测精度。
文摘为研究灰尘对光伏发电性能的影响,通过搭建的实验台采集清洁与污染光伏组串每天的发电数据,同时监测气象数据,分析积灰及天气对光伏组件发电性能的影响。结果表明,冬季PM2.5质量浓度的上升和春季沙尘暴天气的频发使得光伏组件表面灰尘积累较多,累计发电量损失增长较快,而夏季由于降水增加,灰尘难以积聚在光伏组件上,累计发电量损失增长缓慢。此外,利用DTW(dynamic time warping)算法来寻找相似日。首先通过熵值法计算出各气象参数的权重,然后按日期逆序逐个计算出每个历史日各个气象参数对应的DTW值,再乘以其权重并相加得到历史日的综合DTW值。通过比较各历史日的综合DTW值,选出与当前日最接近的气象相似日。在避开极端天气的情况下,选择数据集中的一部分作为验证集,并对寻找相似日的判据进行优化,选取每天09:00—15:00的数据分为3个时间段进行分析,并设定平均太阳辐照度不小于600 W/m2的条件。优化后,预测模型的评价指标决定系数为0.83,均方根误差为0.22,预测效果显著提升。最后利用该算法为光伏电站制定清洗策略,经过累计发电量损失与清洗成本的对比,确定在长期不降雨情况下,电站应每28天进行一次清洗。
文摘为提高智能家电的人机交互性,研究实现了一种基于Kinect传感器的手势识别系统,用户通过该系统可手势控制电视的多种操作功能。对常见的3种动态手势识别算法进行分析对比后,结合应用需求,重点研究了动态手势识别DTW算法。基于Kinect for Windows SDK获取的手势深度图像和骨骼图像数据,采用DTW算法进行识别,最后给出了程序实现。实验表明,该方法可实现多种电视控制功能,而且具有较好的实时性和准确性。