期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于决策树的神经网络 被引量:13
1
作者 李爱军 罗四维 +1 位作者 黄华 刘蕴辉 《计算机研究与发展》 EI CSCD 北大核心 2005年第8期1312-1317,共6页
传统人工神经网络模型采用试探的方法确定合适的网络结构,并随机地初始化参数值,导致神经网络训练效率低、结果不稳定.熵网络是一种建立在决策树之上的3层前馈网络,在熵网络基础上,提出了基于决策树的神经网络设计方法(DTBNN).DTBNN中... 传统人工神经网络模型采用试探的方法确定合适的网络结构,并随机地初始化参数值,导致神经网络训练效率低、结果不稳定.熵网络是一种建立在决策树之上的3层前馈网络,在熵网络基础上,提出了基于决策树的神经网络设计方法(DTBNN).DTBNN中提供了对神经网络参数的初始值合理设置的方法,并提出了由决策树确定的只是熵网络的初始结构,在实际的网络构造中需要根据实际应用添加神经元和连接权以提高网络的性能.理论分析和实验结果表明了这种方法的合理性. 展开更多
关键词 人工神经网络 决策树 熵网络 基于决策树的神经网络 分类
下载PDF
基于DTBNN的双阈值图像分割方法
2
作者 付永强 宋丽华 +1 位作者 李也白 马礼 《微型机与应用》 2016年第15期57-60,64,共5页
为了能够实现动态无灰度特征峰值的图像分割,提出一种基于决策树的神经网络(Decision Tree Based Neural Network,DTBNN)双阈值图像分割方法。该方法首先运用决策树与神经网络的对应关系,构建出稳定、训练高效的神经网络;然后通过实验... 为了能够实现动态无灰度特征峰值的图像分割,提出一种基于决策树的神经网络(Decision Tree Based Neural Network,DTBNN)双阈值图像分割方法。该方法首先运用决策树与神经网络的对应关系,构建出稳定、训练高效的神经网络;然后通过实验采集的图像提取图像灰度均值,最大灰度偏差与阈值映射函数作为样本数据训练神经网络;最后采用训练好的神经网络对被测图像进行阈值映射函数筛选,并计算出被测图像的上下灰度阈值,完成对图像的双阈值分割。仿真实验表明,该方法不依赖于灰度直方图的峰值特征并能获取较好的上下限分割阈值,与最大类间方差双阈值法和最大熵双阈值法比较,能够在动态图像中实现双阈值分割。 展开更多
关键词 dtbnn 双阈值 图像分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部