Acutely,pain serves to protect us from potentially harmful stimuli,however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain.Although acute pain is fairly well control...Acutely,pain serves to protect us from potentially harmful stimuli,however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain.Although acute pain is fairly well controlled,chronic pain remains difficult to treat.Chronic pain is primarily a neuropathic condition,but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets,immune cells,and the role of the autonomic nervous system in contributing chronic pain conditions.The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.展开更多
Environmental enrichment is known to be beneficial for cognitive improvement.In many animal models of neurological disorders and brain injury,EE has also demonstrated neuroprotective benefits in neurodegenerative dise...Environmental enrichment is known to be beneficial for cognitive improvement.In many animal models of neurological disorders and brain injury,EE has also demonstrated neuroprotective benefits in neurodegenerative diseases and in improving recovery after stroke or traumatic brain injury.The exact underlying mechanism for these phenomena has been unclear.Recent findings have now indicated that neuronal activity elicited by environmental enrichment induces Ca2+influx in dorsal root ganglion neurons results in lasting enhancement of CREB-binding protein-mediated histone acetylation.This,in turn,increases the expression of pro-regeneration genes and promotes axonal regeneration.This mechanism associated with neuronal activity elicited by environmental enrichment-mediated pathway is one of several epigenetic mechanisms which modulate axon regeneration upon injury that has recently come to light.The other prominent mechanisms,albeit not yet directly associated with environmental enrichment,include DNA methylation/demethylation and N6-methyladenosine modification of transcripts.In this brief review,I highlight recent work that has shed light on the epigenetic basis of environmental enrichment-based axon regeneration,and discuss the mechanism and pathways involved.I further speculate on the implications of the findings,in conjunction with the other epigenetic mechanisms,that could be harness to promote axon regeneration upon injury.展开更多
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously exp...Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.展开更多
文摘Acutely,pain serves to protect us from potentially harmful stimuli,however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain.Although acute pain is fairly well controlled,chronic pain remains difficult to treat.Chronic pain is primarily a neuropathic condition,but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets,immune cells,and the role of the autonomic nervous system in contributing chronic pain conditions.The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
基金supported by the National University of Singapore Graduate School for Integrative Sciences and Engineering(to BLT)
文摘Environmental enrichment is known to be beneficial for cognitive improvement.In many animal models of neurological disorders and brain injury,EE has also demonstrated neuroprotective benefits in neurodegenerative diseases and in improving recovery after stroke or traumatic brain injury.The exact underlying mechanism for these phenomena has been unclear.Recent findings have now indicated that neuronal activity elicited by environmental enrichment induces Ca2+influx in dorsal root ganglion neurons results in lasting enhancement of CREB-binding protein-mediated histone acetylation.This,in turn,increases the expression of pro-regeneration genes and promotes axonal regeneration.This mechanism associated with neuronal activity elicited by environmental enrichment-mediated pathway is one of several epigenetic mechanisms which modulate axon regeneration upon injury that has recently come to light.The other prominent mechanisms,albeit not yet directly associated with environmental enrichment,include DNA methylation/demethylation and N6-methyladenosine modification of transcripts.In this brief review,I highlight recent work that has shed light on the epigenetic basis of environmental enrichment-based axon regeneration,and discuss the mechanism and pathways involved.I further speculate on the implications of the findings,in conjunction with the other epigenetic mechanisms,that could be harness to promote axon regeneration upon injury.
基金supported by grant from the Ministry of Education,Science and Technological Development,Republic of Serbia(173051)supported by a UICC Yamagiwa-Yoshida Memorial International Cancer Study Grant(YY2/2015/381414)
文摘Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.