Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which de- pends on the orchestrated accessibility of regulatory proteins to promoters and other c/s-regulatory DNA eleme...Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which de- pends on the orchestrated accessibility of regulatory proteins to promoters and other c/s-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the develop- mental process. To understand the regulatory mechanism and functional elements modulating morpholog- ical and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening.展开更多
A cell-free apoptosis system was established by adding dATP and cytochrome c to Xenopus laevis egg extracts S-150. Accompanied by an incubation process, an apoptosis-specific DNase was activated in egg extracts which ...A cell-free apoptosis system was established by adding dATP and cytochrome c to Xenopus laevis egg extracts S-150. Accompanied by an incubation process, an apoptosis-specific DNase was activated in egg extracts which depended on Mg 2+ and inhibited by Zn 2+. Two nucleases existing in egg extracts were revealed by in-gel nuclease assay. Further experiments showed that 27 ku nuclease which was different from other Ca 2+/Mg 2+-dependent nucleases was a possible candidate involved in apoptosis.展开更多
Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants. During PCD, the degradation of genomic DNA is catalyzed by endonucleases. However, to date, no endonuc...Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants. During PCD, the degradation of genomic DNA is catalyzed by endonucleases. However, to date, no endonuclease has been shown to participate in secondary xylem development. Two novel Ca^2+-dependent DNase genes, EuCaN1 and EuCaN2, were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv., their functions were studied by DNase activity assay, in situ hybridization, protein immunolocalization and virus-induced gene silencing experiments. Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp, encoding two proteins of 328 amino acids with SNase-like functional domains. The genomic DNA sequence for EuCaN1 had no introns, while EuCaN2 had 8 introns. EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca^2+-dependence at neutral pH. Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus. Their activity dynamics was closely correlated with secondary xylem development. Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes. The results provide evidence that the Ca^2+-dependent DNases are involved in secondary xylem development.展开更多
Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera...Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.展开更多
文摘Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which de- pends on the orchestrated accessibility of regulatory proteins to promoters and other c/s-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the develop- mental process. To understand the regulatory mechanism and functional elements modulating morpholog- ical and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening.
文摘A cell-free apoptosis system was established by adding dATP and cytochrome c to Xenopus laevis egg extracts S-150. Accompanied by an incubation process, an apoptosis-specific DNase was activated in egg extracts which depended on Mg 2+ and inhibited by Zn 2+. Two nucleases existing in egg extracts were revealed by in-gel nuclease assay. Further experiments showed that 27 ku nuclease which was different from other Ca 2+/Mg 2+-dependent nucleases was a possible candidate involved in apoptosis.
基金supported by the National Basic Research Program of China (2012CB114500)the National Natural Science Foundation of China (31070156)
文摘Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants. During PCD, the degradation of genomic DNA is catalyzed by endonucleases. However, to date, no endonuclease has been shown to participate in secondary xylem development. Two novel Ca^2+-dependent DNase genes, EuCaN1 and EuCaN2, were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv., their functions were studied by DNase activity assay, in situ hybridization, protein immunolocalization and virus-induced gene silencing experiments. Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp, encoding two proteins of 328 amino acids with SNase-like functional domains. The genomic DNA sequence for EuCaN1 had no introns, while EuCaN2 had 8 introns. EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca^2+-dependence at neutral pH. Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus. Their activity dynamics was closely correlated with secondary xylem development. Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes. The results provide evidence that the Ca^2+-dependent DNases are involved in secondary xylem development.
基金financially supported by the National Natural Science Foundation of China (22275054,52103314,21975072,and 51902106)Chenguang Plan of Shanghai Education Development Foundation (21CGA38)the Program of Shanghai Academic/Technology Research Leader (23XD1401000)。
基金supported by grants from the International Islamic University Malaysia,the research management centre(No.IIUM/504/5/29/1)
文摘Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.