Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is...Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and sup- porting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.展开更多
PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of...PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of Chinese-Language Literature (1997 - 2000). STUDY SELECTION: Data from published articles about TGF-beta signal transduction in recent domestic and foreign literature were selected. DATA EXTRACTION: Data were mainly extracted from 22 articles which are listed in the reference section of this review. RESULTS: Smad proteins mediate signal transduction induced by the TGF-beta superfamily. Based on their structural and functional properties, Smad proteins are divided into three groups. The first group, receptor-regulated Smads (R-Smads), are phosphorylated by activated type I receptors and form heteromeric complexes with the second group of Smads, common mediator Smads (Co-Smads). These Smad complexes translocate into the nucleus to influence gene transcription. Inhibitory Smads (I-Smads) are the third group and these antagonize the activity of R-Smads. In the nucleus, Smads can directly contact Smad-binding elements (SBE) in target gene promoters. Through interaction with different transcription factors, transcriptional co-activators or co-repressors, Smads elicit different effects in various cell types. The aberrance of Smad proteins has been noted in several human disorders such as fibrosis, hypertrophic scarring and cancer. CONCLUSION: The structure of Smads determines their function as transcriptional factors which translocate signals from the cell surface to the nucleus where Smads regulate TGF-beta superfamily-dependent gene expression.展开更多
AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture,...AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture, MTT, Electromicroscopy, agarose gel electrophoresis, lucigenin, Western blot and electrophoretic mobility shift assay (EMSA) analysis were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanisms. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Lucigenin assay showed the generation of ROS in cells under incubation with JTE-522. The increased ROS generation might contribute to the induction of AGS cells to apoptosis. EMSA and Western blot revealed that NF-kB activity was almost completely inhibited by preventing the degradation of IkBalpha. Additionally, by using Western blot we confirmed that the level of bcl-2 was decreased, whereas p53 showed a great increase following JTE-522 treatment. Their changes were in a dose-dependent manner. CONCLUSION: These findings suggest that reactive oxygen species, NF-kB, p53, bcl-2 and caspase-3 may play an important role in the induction of apoptosis in AGS cells after treatment with JTE-522.展开更多
The expression of inducible genes in plants is regulated by specific transcription factors at the transcrip-tional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulatio...The expression of inducible genes in plants is regulated by specific transcription factors at the transcrip-tional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specific cis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.展开更多
Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play ...Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.展开更多
AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activ...AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in 展开更多
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane pr...The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.展开更多
AIM: To observe the growth suppression effect of exogenous introduction of early growth response gene-1 (Egr-1 gene) on esophageal carcinoma tissue as well as on esophageal carcinoma cell line Eca109 and to explore th...AIM: To observe the growth suppression effect of exogenous introduction of early growth response gene-1 (Egr-1 gene) on esophageal carcinoma tissue as well as on esophageal carcinoma cell line Eca109 and to explore the potential application of Egr-1 gene in gene therapy of tumor. METHODS: Eukaryotic expression vector of PCMV-Egr-1 plasmid was introduced into Eca109 cell line which expressed no Egr-1 protein originally with lipofectamine transfection method. The introduction and expression of PCMV-Egr-1 plasmid into Eca109 cell line was confirmed by G418 selection culture, PCR amplification of neogene contained in the vector, Western blot analysis and immunocytochemical analysis. The cell growth curve, soft agar colony formation rate and tumorigenicity in SCID mice were examined to demonstrate the growth suppression effect of exogenous Egr-1 gene on Eca109 cell line. The Egr-1 mRNA and Egr-1 protein were also detected in 50 surgical specimens of esophageal carcinoma by in situ hybridization and immunohistochemistry. RESULTS: Exogenous Egr-1 gene was introduced successfully into Eca109 cell line and expressed Egr-1 protein stably. The transfected Eca109 cell line grew more slowly than control Eca109 as shown by cell growth curves, the soft agar colony formation rate (4.0% vs 6.9%, P 【 0.01) and the average growth rate of tumor in SCID mice (35.5 +/- 7.6 vs 65.8 +/- 7.6, P 【 0.05). The expression level of Egr-1 mRNA and protein significantly increased in dysplastic epithelia adjacent to cancer rather than in cancer tissues (65.8% vs 20.0% by ISH and 57.9% vs 0.01). CONCLUSION: Exogenous Egr-1 gene shows the strong effect of growth inhibition in Eca109 cell line. Egr-1 in the cancer tissue shows down-regulated expression that supports the inhibited function of Egr-1 in cancer growth and suggests Egr-1 may have an important role in gene therapy of esophageal carcinoma.展开更多
AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot a...AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.展开更多
Flavonoid biosynthetic genes are often coordinately regulated in a temporal manner during flower or fruit development, resulting in specific accumulation profiles of flavonoid compounds. R2R3-MYB-type transcription fa...Flavonoid biosynthetic genes are often coordinately regulated in a temporal manner during flower or fruit development, resulting in specific accumulation profiles of flavonoid compounds. R2R3-MYB-type transcription factors (TFs) "recruit" a set of biosynthetic genes to produce flavonoids, and, therefore, R2R3-MYBs are responsible for the coordinated expression of structural genes. Although a wealth of information regarding the identified and functionally characterized R2R3-MYBs that are involved in flavonoid accumulation is available to date, this is the first review on the global regulation of MYB factors in the flavonoid pathway. The data presented in this review demonstrate that anthocyanin, flavone/flavonol/3-deoxyflavonoid (FFD), proanthocyanidin (PA), and isoflavonoid are independently regulated by different subgroups of R2R3-MYBs. Furthermore, FFD-specific R2R3-MYBs have a preference for early biosynthetic genes (EBGs) as their target genes; anthocyanin-specific R2R3-MYBs from dicot species essentially regulate late biosynthetic genes (LBGs); the remaining R2R3-MYBs have a wider range of target gene specificity. To elucidate the nature of the differential target gene specificity between R2R3-MYBs, we analyzed the DNA binding domain (also termed the MYB-domain) of R2R3-MYBs and the distribution of the recognition cis-elements. We identified four conserved amino acid residues located in or just before helix-3 of dicot anthocyanin R2R3-MYBs that might account for the different recognition DNA sequence and subsequently the different target gene specificity to the remaining R2R3-MYB TFs.展开更多
WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cD...WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cDNA library. The deduced polypeptide contains 263 amino acid residues with a potential leucine zipper structure in its N-terminus, sharing low identity with other known WRKY members. OsWRKY89 and three deletion derivatives from its N-terminal were expressed in high levels in Escherichia coli as a C-terminally six-histidine-tagged fusion protein, and purified by employing one-step affinity chromatography on a Ni-NTA column. The recombinant OsWRKY89 protein was found to bind specially to sequences harboring W box cis elements by using electrophoretic mobility shift assays. This binding activity was decreased significantly by deletion of the leucine zipper-like structure in the N-terminal of Os- WRKY89. Using a yeast two-hybrid assay system, we found that the leucine zipper motif of OsWRKY89 was involved in the protein-protein interaction. Further deletion to remove partial WRKY domain abolished completely the interaction between the expressed protein and the W boxes, indicating that the WRKY domain is essential to the DNA-binding. These data strongly suggest that the leucine zipper-like motif of OsWRKY89 plays a significant role in the protein-protein and DNA-protein interactions.展开更多
C-repeat binding proteins (CBFs) are a group of transcription factors that have been proven to be important for stress tolerance in plants. Many of these transcription factors transactivate the promoters of cold-reg...C-repeat binding proteins (CBFs) are a group of transcription factors that have been proven to be important for stress tolerance in plants. Many of these transcription factors transactivate the promoters of cold-regulated genes via binding to low temperature-or dehydration-responsive c/s-elements, thus conferring plants cold acclimation. In the present study, we isolated a C-repeat binding transcription factor from maize using the yeast one-hybrid system with the C-repeat motif from the promoter of the Arabidopsis COR15a gene as bait. The isolated transcription factor is highly similar to the Arabidopsis CBF3 in their predicted amino acid sequences, and is therefore designated ZmCBF3. Point mutation analyses of the ZmCBF3-binding c/s-element revealed (A/G)(C/T)CGAC as the core binding sequence. Expression analyses showed that ZmCBF3 was upregulated by both abscisic acid and low temperature, and was actively expressed during embryogenesis, suggesting that ZmCBF3 plays a role in stress response in maize.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocamp...The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.展开更多
文摘Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and sup- porting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.
基金supported by a grant from the National Natural Science Foundation of China(No.G1999054204); the National Prominent Youth Science Foundation of China(No.39525024).
文摘PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of Chinese-Language Literature (1997 - 2000). STUDY SELECTION: Data from published articles about TGF-beta signal transduction in recent domestic and foreign literature were selected. DATA EXTRACTION: Data were mainly extracted from 22 articles which are listed in the reference section of this review. RESULTS: Smad proteins mediate signal transduction induced by the TGF-beta superfamily. Based on their structural and functional properties, Smad proteins are divided into three groups. The first group, receptor-regulated Smads (R-Smads), are phosphorylated by activated type I receptors and form heteromeric complexes with the second group of Smads, common mediator Smads (Co-Smads). These Smad complexes translocate into the nucleus to influence gene transcription. Inhibitory Smads (I-Smads) are the third group and these antagonize the activity of R-Smads. In the nucleus, Smads can directly contact Smad-binding elements (SBE) in target gene promoters. Through interaction with different transcription factors, transcriptional co-activators or co-repressors, Smads elicit different effects in various cell types. The aberrance of Smad proteins has been noted in several human disorders such as fibrosis, hypertrophic scarring and cancer. CONCLUSION: The structure of Smads determines their function as transcriptional factors which translocate signals from the cell surface to the nucleus where Smads regulate TGF-beta superfamily-dependent gene expression.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture, MTT, Electromicroscopy, agarose gel electrophoresis, lucigenin, Western blot and electrophoretic mobility shift assay (EMSA) analysis were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanisms. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Lucigenin assay showed the generation of ROS in cells under incubation with JTE-522. The increased ROS generation might contribute to the induction of AGS cells to apoptosis. EMSA and Western blot revealed that NF-kB activity was almost completely inhibited by preventing the degradation of IkBalpha. Additionally, by using Western blot we confirmed that the level of bcl-2 was decreased, whereas p53 showed a great increase following JTE-522 treatment. Their changes were in a dose-dependent manner. CONCLUSION: These findings suggest that reactive oxygen species, NF-kB, p53, bcl-2 and caspase-3 may play an important role in the induction of apoptosis in AGS cells after treatment with JTE-522.
基金the State Key Basic Research Development Program of China (Grant No. G1999011703) the National Natural Science Foundation of China (Grant No. 39770167).
文摘The expression of inducible genes in plants is regulated by specific transcription factors at the transcrip-tional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specific cis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.
文摘Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.
基金the National Natural Scientific Foundation of China,No.39670298
文摘AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in
文摘The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.
基金Supported by the National Natural Science Foundation of China,No.39670298.
文摘AIM: To observe the growth suppression effect of exogenous introduction of early growth response gene-1 (Egr-1 gene) on esophageal carcinoma tissue as well as on esophageal carcinoma cell line Eca109 and to explore the potential application of Egr-1 gene in gene therapy of tumor. METHODS: Eukaryotic expression vector of PCMV-Egr-1 plasmid was introduced into Eca109 cell line which expressed no Egr-1 protein originally with lipofectamine transfection method. The introduction and expression of PCMV-Egr-1 plasmid into Eca109 cell line was confirmed by G418 selection culture, PCR amplification of neogene contained in the vector, Western blot analysis and immunocytochemical analysis. The cell growth curve, soft agar colony formation rate and tumorigenicity in SCID mice were examined to demonstrate the growth suppression effect of exogenous Egr-1 gene on Eca109 cell line. The Egr-1 mRNA and Egr-1 protein were also detected in 50 surgical specimens of esophageal carcinoma by in situ hybridization and immunohistochemistry. RESULTS: Exogenous Egr-1 gene was introduced successfully into Eca109 cell line and expressed Egr-1 protein stably. The transfected Eca109 cell line grew more slowly than control Eca109 as shown by cell growth curves, the soft agar colony formation rate (4.0% vs 6.9%, P 【 0.01) and the average growth rate of tumor in SCID mice (35.5 +/- 7.6 vs 65.8 +/- 7.6, P 【 0.05). The expression level of Egr-1 mRNA and protein significantly increased in dysplastic epithelia adjacent to cancer rather than in cancer tissues (65.8% vs 20.0% by ISH and 57.9% vs 0.01). CONCLUSION: Exogenous Egr-1 gene shows the strong effect of growth inhibition in Eca109 cell line. Egr-1 in the cancer tissue shows down-regulated expression that supports the inhibited function of Egr-1 in cancer growth and suggests Egr-1 may have an important role in gene therapy of esophageal carcinoma.
基金the National Outstanding Youth Science foundation of China (B type,39825502)the National Natural Science Foundation of China (39880015,30170477)the Natural Science Foundation of Fujian Province (C0110004).
文摘AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.
文摘Flavonoid biosynthetic genes are often coordinately regulated in a temporal manner during flower or fruit development, resulting in specific accumulation profiles of flavonoid compounds. R2R3-MYB-type transcription factors (TFs) "recruit" a set of biosynthetic genes to produce flavonoids, and, therefore, R2R3-MYBs are responsible for the coordinated expression of structural genes. Although a wealth of information regarding the identified and functionally characterized R2R3-MYBs that are involved in flavonoid accumulation is available to date, this is the first review on the global regulation of MYB factors in the flavonoid pathway. The data presented in this review demonstrate that anthocyanin, flavone/flavonol/3-deoxyflavonoid (FFD), proanthocyanidin (PA), and isoflavonoid are independently regulated by different subgroups of R2R3-MYBs. Furthermore, FFD-specific R2R3-MYBs have a preference for early biosynthetic genes (EBGs) as their target genes; anthocyanin-specific R2R3-MYBs from dicot species essentially regulate late biosynthetic genes (LBGs); the remaining R2R3-MYBs have a wider range of target gene specificity. To elucidate the nature of the differential target gene specificity between R2R3-MYBs, we analyzed the DNA binding domain (also termed the MYB-domain) of R2R3-MYBs and the distribution of the recognition cis-elements. We identified four conserved amino acid residues located in or just before helix-3 of dicot anthocyanin R2R3-MYBs that might account for the different recognition DNA sequence and subsequently the different target gene specificity to the remaining R2R3-MYB TFs.
基金This work was supported by the State Basic Research and Development Plan(G200001 6203)the National Natural Science Foundation of China(Grant Nos.30370139&30471122).
文摘WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cDNA library. The deduced polypeptide contains 263 amino acid residues with a potential leucine zipper structure in its N-terminus, sharing low identity with other known WRKY members. OsWRKY89 and three deletion derivatives from its N-terminal were expressed in high levels in Escherichia coli as a C-terminally six-histidine-tagged fusion protein, and purified by employing one-step affinity chromatography on a Ni-NTA column. The recombinant OsWRKY89 protein was found to bind specially to sequences harboring W box cis elements by using electrophoretic mobility shift assays. This binding activity was decreased significantly by deletion of the leucine zipper-like structure in the N-terminal of Os- WRKY89. Using a yeast two-hybrid assay system, we found that the leucine zipper motif of OsWRKY89 was involved in the protein-protein interaction. Further deletion to remove partial WRKY domain abolished completely the interaction between the expressed protein and the W boxes, indicating that the WRKY domain is essential to the DNA-binding. These data strongly suggest that the leucine zipper-like motif of OsWRKY89 plays a significant role in the protein-protein and DNA-protein interactions.
基金the National Natural Science Foundation of China (30671195and 30300028)
文摘C-repeat binding proteins (CBFs) are a group of transcription factors that have been proven to be important for stress tolerance in plants. Many of these transcription factors transactivate the promoters of cold-regulated genes via binding to low temperature-or dehydration-responsive c/s-elements, thus conferring plants cold acclimation. In the present study, we isolated a C-repeat binding transcription factor from maize using the yeast one-hybrid system with the C-repeat motif from the promoter of the Arabidopsis COR15a gene as bait. The isolated transcription factor is highly similar to the Arabidopsis CBF3 in their predicted amino acid sequences, and is therefore designated ZmCBF3. Point mutation analyses of the ZmCBF3-binding c/s-element revealed (A/G)(C/T)CGAC as the core binding sequence. Expression analyses showed that ZmCBF3 was upregulated by both abscisic acid and low temperature, and was actively expressed during embryogenesis, suggesting that ZmCBF3 plays a role in stress response in maize.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).
基金financially sponsored by a grant from Talent Development Project of Hebei Province, No. 2010353the Key Medical Research Subject of Hebei Province Health Department, No. 20090582
文摘The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.