Stable light data from Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) satellites and authoritative energy consumption data distributed by National Bureau of Statistics of China w...Stable light data from Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) satellites and authoritative energy consumption data distributed by National Bureau of Statistics of China were applied to estimating the distribution of anthropogenic heat release in China from 1992 to 2009. A strong linear relationship was found between DMSP/OLS digital number data and anthropogenic heat flux density (AHFD). The results indicate that anthropogenic heat release in China was geographically concentrated and was fundamentally correlated with economic activities. The anthropogenic heat release in economically developed areas in northern, eastern, and southern China was much larger than other regions, whereas it was very small in northwestern and southwestern China. The mean AHFD in China increased from 0.07 W m-2 in 1978 to 0.28 W m-2 in 2008. The results indicate that in the anthropogenic heat- concentrated regions of Beijing, the Yangtze River Delta, and the Pearl River Delta, the AHFD levels were much higher than the average. The effect of aggravating anthropogenic heat release on climate change deserves further investigation.展开更多
基金Supported by the National Natural Science Foundation of China(40775008 and 41075015)Ministry of Science and Technology of China(2010DFA22770)
文摘Stable light data from Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) satellites and authoritative energy consumption data distributed by National Bureau of Statistics of China were applied to estimating the distribution of anthropogenic heat release in China from 1992 to 2009. A strong linear relationship was found between DMSP/OLS digital number data and anthropogenic heat flux density (AHFD). The results indicate that anthropogenic heat release in China was geographically concentrated and was fundamentally correlated with economic activities. The anthropogenic heat release in economically developed areas in northern, eastern, and southern China was much larger than other regions, whereas it was very small in northwestern and southwestern China. The mean AHFD in China increased from 0.07 W m-2 in 1978 to 0.28 W m-2 in 2008. The results indicate that in the anthropogenic heat- concentrated regions of Beijing, the Yangtze River Delta, and the Pearl River Delta, the AHFD levels were much higher than the average. The effect of aggravating anthropogenic heat release on climate change deserves further investigation.