期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
统计关系学习模型Markov逻辑网综述 被引量:7
1
作者 孙舒杨 刘大有 +1 位作者 孙成敏 黄冠利 《计算机应用研究》 CSCD 北大核心 2007年第2期1-3,共3页
统计关系学习是人工智能研究的热点,在生物信息学、地理信息系统和自然语言理解等领域有着重要应用,Markov逻辑网是将Markov网与一阶逻辑相结合的一种全新的统计关系学习模型。介绍了Markov逻辑网的理论模型和学习方法,并探讨了目前存... 统计关系学习是人工智能研究的热点,在生物信息学、地理信息系统和自然语言理解等领域有着重要应用,Markov逻辑网是将Markov网与一阶逻辑相结合的一种全新的统计关系学习模型。介绍了Markov逻辑网的理论模型和学习方法,并探讨了目前存在的问题和研究方向。 展开更多
关键词 统计关系学习 一阶逻辑 markov 机器学习 markov逻辑网
下载PDF
基于后验概率的Markov逻辑网参数学习方法 被引量:3
2
作者 孙舒杨 刘大有 孙成敏 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第6期946-950,共5页
通过介绍统计关系学习方法Markov逻辑网的理论模型和参数学习方法,提出一种基于后验概率的参数估计方法,该方法采用正态先验分布,用伪似然概率替代似然概率,通过最大化伪后验概率来学习模型参数.实验结果表明,该方法能够有效地学出模型... 通过介绍统计关系学习方法Markov逻辑网的理论模型和参数学习方法,提出一种基于后验概率的参数估计方法,该方法采用正态先验分布,用伪似然概率替代似然概率,通过最大化伪后验概率来学习模型参数.实验结果表明,该方法能够有效地学出模型参数,且所得模型推理能力优于现有的参数学习方法. 展开更多
关键词 统计关系学习 一阶逻辑 markov 机器学习 markov逻辑网
下载PDF
An algorithm for trajectory prediction of flight plan based on relative motion between positions 被引量:7
3
作者 Yi LIN Jian-wei ZHANG Hong LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第7期905-916,共12页
Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical f... Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods. 展开更多
关键词 Velocity vector Hidden markov model Gaussian mixture model machine learning Plan path prediction Relative motion between positions(RMBP)
原文传递
Markov逻辑网在重复数据删除中的应用 被引量:3
4
作者 张玉芳 黄涛 +2 位作者 艾东梅 熊忠阳 唐蓉君 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第8期36-41,共6页
为了解决和突破现阶段重复数据删除方法大多只能针对特定领域,孤立地解决问题的某个方面所带来的不足和局限,提出了基于Markov逻辑网的统计关系学习方法。该方法可以通过计算一个世界的概率分布来为推理服务,从而可将重复数据删除问题... 为了解决和突破现阶段重复数据删除方法大多只能针对特定领域,孤立地解决问题的某个方面所带来的不足和局限,提出了基于Markov逻辑网的统计关系学习方法。该方法可以通过计算一个世界的概率分布来为推理服务,从而可将重复数据删除问题形式化。具体采用了判别式训练的学习算法和MC-SAT推理算法,并详细阐述了如何用少量的谓词公式来描述重复数据删除问题中不同方面的本质特征,将Markov逻辑表示的各方面组合起来形成各种模型。实验结果表明基于Markov逻辑网的重复数据删除方法不但可以涵盖经典的Fellegi-Sunter模型,还可以取得比传统的基于聚类算法和基于相似度计算的方法更好的效果,从而为Markov逻辑网解决实际问题提供了有效途径。 展开更多
关键词 重复数据删除 markov逻辑网 markov 统计关系学习 机器学习
下载PDF
Investigation of Influence of Winding Structure on Reliability of Permanent Magnet Machines 被引量:6
5
作者 Wei Li Ming Cheng 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第2期87-95,共9页
Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov mo... Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov model.The mean time to failure is used to compare the reliability of different windings structure.The mean time to failure of multiphase winding is derived in terms of the underlying parameters.The mean time to failure of winding is affected by the number of phases,the winding failure rate,the fault-tolerant mechanism success probability,and the state transition success probability.The influence of the phase number,winding distribution types,multi three-phase structure,and fault-tolerant mechanism success probability on the winding reliability is investigated.The results of reliability analysis lay the foundation for the reliability design of permanent magnet machines. 展开更多
关键词 phase number winding distribution markov model RELIABILITY mean time to failure permanent magnet machine
下载PDF
基于马尔科夫树时态标注算法的自动机器翻译系统研究
6
作者 郭小娥 《自动化与仪器仪表》 2024年第8期233-237,242,共6页
在汉英文化交流日益频繁的背景下,精确的汉英机器翻译成为一个重要议题。针对英语时态不一致的问题,研究提出了一种马尔科夫树时态标注算法,在这基础上结合了深度学习的Transformer模型,最终构建了自动机器翻译系统。结果显示,在包含有... 在汉英文化交流日益频繁的背景下,精确的汉英机器翻译成为一个重要议题。针对英语时态不一致的问题,研究提出了一种马尔科夫树时态标注算法,在这基础上结合了深度学习的Transformer模型,最终构建了自动机器翻译系统。结果显示,在包含有时态和无时态数据的对比中,时态标注的总准确率从0.670提升至0.720,动词准确率从0.676提升至0.725。此外,对于新词汇的标注准确率,双元结构从64.9%提高至84.9%,而三元结构从61.2%提升至92.9%。此外,结果表明,马尔科夫树时态标注算法的自动翻译系统,与未使用时态标注的基线模型相比,具有较高的翻译准确率。该研究对提高机器翻译的精度和可靠性具有重要意义,为机器翻译技术的进一步发展提供了有价值的方向。 展开更多
关键词 马尔科夫 标注 机器翻译 TRANSFORMER 英文
原文传递
一种基于支持向量回归的混合建模方法 被引量:3
7
作者 孙泽斌 赵琦 +3 位作者 赵洪博 冯文全 张文峰 杨天社 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第2期352-359,共8页
近年来,随着计算能力的不断提高,数据驱动的建模方法受到了广泛的关注,对单模式系统进行定量分析的建模方法获得了诸多研究。然而,实际应用中大多数系统为多模式系统,不但各个模式有着不同的连续行为,连续状态还会在模式之间进行切换。... 近年来,随着计算能力的不断提高,数据驱动的建模方法受到了广泛的关注,对单模式系统进行定量分析的建模方法获得了诸多研究。然而,实际应用中大多数系统为多模式系统,不但各个模式有着不同的连续行为,连续状态还会在模式之间进行切换。针对这一情形,本文提出了经验概率混合自动机模型,并提出了针对该模型的基于支持向量回归(SVR)的多模式定性定量混合建模方法。该方法使用小波技术识别模式切换点,并在各个模式下单独建立支持向量模型,最后使用D-Markov机整合模型。经实例验证,该方法与传统支持向量回归模型的稳定性接近,但精确程度显著提高。 展开更多
关键词 混合建模 支持向量回归(SVR) D-markov 小波 数据驱动的建模
下载PDF
符号动态滤波的气液两相流流型识别 被引量:3
8
作者 宋情洋 刘铁军 陈宜倩 《中国计量大学学报》 2018年第3期281-286,323,共7页
气液两相流流型识别对石油和化工等工业生产安全性具有重要作用.目前,基于数学模型的流型识别技术成为了主要的发展趋势.本文在超声波法气液两相流流动规律研究基础上提出了一种基于符号动态滤波的流型识别方法.在垂直管道中对纯水、泡... 气液两相流流型识别对石油和化工等工业生产安全性具有重要作用.目前,基于数学模型的流型识别技术成为了主要的发展趋势.本文在超声波法气液两相流流动规律研究基础上提出了一种基于符号动态滤波的流型识别方法.在垂直管道中对纯水、泡状流、弹状流和环状流四种流型进行了实验.经过对实验数据进行分析处理,结果表明该方法可以有效运用于流型识别,从而为气液两相流流型识别的研究提供了新的思路. 展开更多
关键词 符号动态滤波 两相流 流型识别 D-markov
下载PDF
基于改进的MGM(1,n)模型的旋转机械故障预测方法研究 被引量:3
9
作者 孙银银 刘振祥 +1 位作者 胡歙眉 洪宇 《汽轮机技术》 北大核心 2012年第5期381-384,388,共5页
在旋转机械灰色多变量MGM(1,n)预测模型基础上,引入马尔可夫链预测理论,建立灰色多变量马尔可夫MGM(1,n)预测模型,该模型既从系统角度对各特征参数进行统一描述,又通过状态转移概率矩阵的变换提取数据随机波动响应,能够描述不同类型的... 在旋转机械灰色多变量MGM(1,n)预测模型基础上,引入马尔可夫链预测理论,建立灰色多变量马尔可夫MGM(1,n)预测模型,该模型既从系统角度对各特征参数进行统一描述,又通过状态转移概率矩阵的变换提取数据随机波动响应,能够描述不同类型的故障及其不同的发展阶段。通过实例验证表明该模型与灰色多变量MGM(1,n)模型相比具有更高的预测精度。 展开更多
关键词 MGM(1 n)模型 马尔可夫预测模型 旋转机械 故障预测
下载PDF
关系马尔可夫网综述
10
作者 刘智祥 刘大有 +2 位作者 刘曜 高俊华 李景亮 《计算机科学》 CSCD 北大核心 2008年第11期32-35,共4页
统计关系学习是人工智能领域一个新的研究方向。它通过概率推理模型与逻辑的结合,或概率推理模型与关系模式的结合,来达到更高的预测或分类的准确度。它在机器学习和数据挖掘领域具有广泛的应用前景。详细介绍了一种重要的统计关系模型... 统计关系学习是人工智能领域一个新的研究方向。它通过概率推理模型与逻辑的结合,或概率推理模型与关系模式的结合,来达到更高的预测或分类的准确度。它在机器学习和数据挖掘领域具有广泛的应用前景。详细介绍了一种重要的统计关系模型———关系马尔可夫网的理论模型,并总结关系马尔可夫网当前的研究现状,分析了关系马尔可夫网目前存在的问题以及未来的研究方向。 展开更多
关键词 关系马尔可夫网 统计关系学习 马尔可夫网 机器学习
下载PDF
Markov逻辑网在链接预测中的应用
11
作者 张玉芳 孔润 +2 位作者 熊忠阳 田源 舒方俊 《计算机应用研究》 CSCD 北大核心 2011年第6期2154-2157,共4页
传统同类独立同概率分布的链接预测方法会带来很大的噪声,导致预测效果很差,将Markov逻辑网应用到链接预测中,旨在改善这一问题。Markov逻辑网是将Markov网与一阶逻辑结合的统计关系学习方法。利用Markov逻辑网构建关系模型,确定实体之... 传统同类独立同概率分布的链接预测方法会带来很大的噪声,导致预测效果很差,将Markov逻辑网应用到链接预测中,旨在改善这一问题。Markov逻辑网是将Markov网与一阶逻辑结合的统计关系学习方法。利用Markov逻辑网构建关系模型,确定实体之间是否存在链接关系以及当链接关系存在时预测此链接关系的类型。针对两个数据集的实验结果,显示了采用Markov逻辑网模型要比传统链接预测模型有更好的效果,进而为Markov逻辑网解决实际问题提供了依据。 展开更多
关键词 链接预测 markov逻辑网 markov 统计关系学习 机器学习
下载PDF
A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation
12
作者 James W. Mock Suresh S. Muknahallipatna 《Journal of Intelligent Learning Systems and Applications》 2023年第1期36-56,共21页
Deep reinforcement learning (deep RL) has the potential to replace classic robotic controllers. State-of-the-art Deep Reinforcement algorithms such as Proximal Policy Optimization, Twin Delayed Deep Deterministic Poli... Deep reinforcement learning (deep RL) has the potential to replace classic robotic controllers. State-of-the-art Deep Reinforcement algorithms such as Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Reinforcement Algorithms, to mention a few, have been investigated for training robots to walk. However, conflicting performance results of these algorithms have been reported in the literature. In this work, we present the performance analysis of the above three state-of-the-art Deep Reinforcement algorithms for a constant velocity walking task on a quadruped. The performance is analyzed by simulating the walking task of a quadruped equipped with a range of sensors present on a physical quadruped robot. Simulations of the three algorithms across a range of sensor inputs and with domain randomization are performed. The strengths and weaknesses of each algorithm for the given task are discussed. We also identify a set of sensors that contribute to the best performance of each Deep Reinforcement algorithm. 展开更多
关键词 Reinforcement Learning machine Learning markov Decision Process Domain Randomization
下载PDF
Methodology for the disaggregation and forecast of demand flexibility in large consumers with the application of non-intrusive load monitoring techniques 被引量:1
13
作者 Marco Toledo-Orozco C.Celi +3 位作者 F.Guartan Arturo Peralta Carlos Alvarez-Bel D.Morales 《Energy and AI》 2023年第3期88-103,共16页
Technological advances,innovation and the new industry 4.0 paradigm guide Distribution System Operators towards a competitive market that requires the articulation of flexible demand response systems.The lack of measu... Technological advances,innovation and the new industry 4.0 paradigm guide Distribution System Operators towards a competitive market that requires the articulation of flexible demand response systems.The lack of measurement and standardization systems in the industry process chain in developing countries prevents the penetration of demand management models,generating inefficiency in the analysis and processing of informa-tion to validate the flexibility potential that large consumers can contribute to the network operator.In this sense,the research uses as input variables the energy and power of the load profile provided by the utility energy meter to obtain the disaggregated forecast in quarter-hour intervals in 4-time windows validated through metrics and its results evaluated by the RMS error to get the total error generated by the methodology with the appli-cation of Machine Learning and Big Data techniques in the Python computational tool through Combinatorial Disaggregation Optimization and Factorial Hidden Markov models. 展开更多
关键词 Big data Combinatorial optimization Factorial hidden markov model machine learning Non-intrusive load monitoring Time of use tariffs
原文传递
Optimal Policies for Quantum Markov Decision Processes 被引量:2
14
作者 Ming-Sheng Ying Yuan Feng Sheng-Gang Ying 《International Journal of Automation and computing》 EI CSCD 2021年第3期410-421,共12页
Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper intro... Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper introduces an extension of MDP,namely quantum MDP(q MDP),that can serve as a mathematical model of decision making about quantum systems.We develop dynamic programming algorithms for policy evaluation and finding optimal policies for q MDPs in the case of finite-horizon.The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world. 展开更多
关键词 Quantum markov decision processes quantum machine learning reinforcement learning dynamic programming decision making
原文传递
Square Neurons, Power Neurons, and Their Learning Algorithms
15
作者 Ying Liu 《American Journal of Computational Mathematics》 2018年第4期296-313,共18页
In this paper, we introduce the concepts of square neurons, power neu-rons, and new learning algorithms based on square neurons, and power neurons. First, we briefly review the basic idea of the Boltzmann Machine, spe... In this paper, we introduce the concepts of square neurons, power neu-rons, and new learning algorithms based on square neurons, and power neurons. First, we briefly review the basic idea of the Boltzmann Machine, specifically that the invariant distributions of the Boltzmann Machine generate Markov chains. We further review ABM (Attrasoft Boltzmann Machine). Next, we review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We review the linear neurons and the associated learning algorithm. We then discuss the problems of the exponential neurons used in ABM, which are unstable, and the problems of the linear neurons, which do not discriminate the wrong answers from the right answers as sharply as the exponential neurons. Finally, we introduce the concept of square neurons and power neurons. We also discuss the advantages of the learning algorithms based on square neurons and power neurons, which have the stability of the linear neurons and the sharp discrimination of the exponential neurons. 展开更多
关键词 AI BOLTZMANN machine markov Chain INVARIANT Distribution COMPLETENESS Deep Neural Network
下载PDF
Completeness Problem of the Deep Neural Networks
16
作者 Ying Liu Shaohui Wang 《American Journal of Computational Mathematics》 2018年第2期184-196,共13页
Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly impro... Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly improved modeling power, and Restricted Boltzmann Machines (RBM) are universal approximators of discrete distributions. In this paper, we provide yet another proof. The advantage of this new proof is that it will lead to several new learning algorithms. We prove that the Deep Neural Networks implement an expansion and the expansion is complete. First, we briefly review the basic Boltzmann Machine and that the invariant distributions of the Boltzmann Machine generate Markov chains. We then review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We discuss how to convert an ABM into a Deep Neural Network. Finally, by establishing the equivalence between an ABM and the Deep Neural Network, we prove that the Deep Neural Network is complete. 展开更多
关键词 AI Universal APPROXIMATORS BOLTZMANN machine markov CHAIN INVARIANT Distribution COMPLETENESS Deep Neural Network
下载PDF
A hybrid Bayesian-network proposition for forecasting the crude oil price 被引量:1
17
作者 Babak Fazelabdolabadi 《Financial Innovation》 2019年第1期520-540,共21页
This paper proposes a hybrid Bayesian Network(BN)method for short-term forecasting of crude oil prices.The method performed is a hybrid,based on both the aspects of classification of influencing factors as well as the... This paper proposes a hybrid Bayesian Network(BN)method for short-term forecasting of crude oil prices.The method performed is a hybrid,based on both the aspects of classification of influencing factors as well as the regression of the out-ofsample values.For the sake of performance comparison,several other hybrid methods have also been devised using the methods of Markov Chain Monte Carlo(MCMC),Random Forest(RF),Support Vector Machine(SVM),neural networks(NNET)and generalized autoregressive conditional heteroskedasticity(GARCH).The hybrid methodology is primarily reliant upon constructing the crude oil price forecast from the summation of its Intrinsic Mode Functions(IMF)and its residue,extracted by an Empirical Mode Decomposition(EMD)of the original crude price signal.The Volatility Index(VIX)as well as the Implied Oil Volatility Index(OVX)has been considered among the influencing parameters of the crude price forecast.The final set of influencing parameters were selected as the whole set of significant contributors detected by the methods of Bayesian Network,Quantile Regression with Lasso penalty(QRL),Bayesian Lasso(BLasso)and the Bayesian Ridge Regression(BRR).The performance of the proposed hybrid-BN method is reported for the three crude price benchmarks:West Texas Intermediate,Brent Crude and the OPEC Reference Basket. 展开更多
关键词 Bayesian networks Random Forest markov chain Monte Carlo Support vector machine
下载PDF
一种基于最优库存的非完全柔性制造系统的调度模型
18
作者 宋春跃 高春华 王慧 《机电工程》 CAS 2000年第2期75-77,共3页
对象是只有一台不可靠 (failure prone)机器的非完全柔性制造系统 ,该系统能生产多种产品 ,但在同一时刻只能生产一种产品 ,并且当由生产一种产品向生产另一种产品切换时 ,引入了setup时间及其成本。决策变量是setup开始时间和生产计划... 对象是只有一台不可靠 (failure prone)机器的非完全柔性制造系统 ,该系统能生产多种产品 ,但在同一时刻只能生产一种产品 ,并且当由生产一种产品向生产另一种产品切换时 ,引入了setup时间及其成本。决策变量是setup开始时间和生产计划。本文基于非完全柔性制造系统的特点 ,考虑正常生产情况下 ,建立了考虑setup时间及成本的流率控制最优化模型。并给出了有限时域上寻优的动态规划算法的充分必要条件。 展开更多
关键词 柔性制造系统 调度模型 动态规划 目标函数
下载PDF
基于马尔可夫链的折弯机活塞密封圈可靠性研究
19
作者 张根保 高琦樑 +2 位作者 刘杰 杨毅 程岩松 《锻压技术》 CAS CSCD 北大核心 2013年第5期99-103,共5页
以某型号折弯机油缸活塞密封圈的寿命和可靠性为研究对象,运用马尔可夫方法,建立了液压油中单个污染颗粒的三状态马尔可夫链。在此基础上推导出密封圈受污染颗粒冲击的冲击率、密封圈的寿命分布、密封圈期望寿命MTTF与污染颗粒浓度和密... 以某型号折弯机油缸活塞密封圈的寿命和可靠性为研究对象,运用马尔可夫方法,建立了液压油中单个污染颗粒的三状态马尔可夫链。在此基础上推导出密封圈受污染颗粒冲击的冲击率、密封圈的寿命分布、密封圈期望寿命MTTF与污染颗粒浓度和密封间隙之间的关系式。通过对MTTF表达式的分析得出,要经济有效地提高密封圈的使用寿命和可靠性,必须同时控制污染颗粒浓度和密封间隙,并指出了生产制造中影响密封圈使用寿命的根本原因。 展开更多
关键词 马尔可夫链 可靠性 密封圈 折弯机 污染颗粒
原文传递
基于改进PCFG的语言解释器模糊测试
20
作者 刘志昊 孙晓山 张阳 《计算机工程》 CAS CSCD 北大核心 2019年第8期22-24,30,共4页
为在语言解释器的模糊测试中构造符合语言规范的样本,并尽可能地得出异常测试结果以便发现漏洞,采用改进的概率上下文无关语法模型控制样本的变异过程,对变异结果中的未定义变量进行修正以提高符合语言规范的样本比率。在此基础上,对语... 为在语言解释器的模糊测试中构造符合语言规范的样本,并尽可能地得出异常测试结果以便发现漏洞,采用改进的概率上下文无关语法模型控制样本的变异过程,对变异结果中的未定义变量进行修正以提高符合语言规范的样本比率。在此基础上,对语言解释器进行模糊测试,结果表明,该测试所生成样本中符合语法、语义规范的比率高达96 %。 展开更多
关键词 模糊测试 马尔科夫模型 概率上下文无关语法 机器学习 语言解释器
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部