Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analys...Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analysis method for a GCPS. Based on this, we discuss the relationship between cyberspace and physical space, especially the computational similarity within the GCPS both in undirected and directed bipartite networks. We then propose a model for evaluating the fusion of the three most important factors: information, communication, and security. We then present the concept of the fusion evaluation cubic for the GCPS quantitative analysis model. Through these models, we can determine whether a more realistic state of the GCPS can be found by enhancing the fusion between cyberspace and physical space. Finally, we conclude that the degree of fusion between the two spaces is very important, not only considering the performance of the whole business process, but also considering security.展开更多
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufactur...Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.展开更多
基金supported by The National Key Research and Development Program of China (Title: Basic Theories and Methods of Analysis and Control of the Cyber Physical Systems for Power Grid (Basic Research Class 2017YFB0903000))the State Grid Science and Technology Project (Title: Research on Architecture and Several Key Technologies for Grid Cyber Physical System,No.SGRIXTKJ[2016]454)
文摘Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analysis method for a GCPS. Based on this, we discuss the relationship between cyberspace and physical space, especially the computational similarity within the GCPS both in undirected and directed bipartite networks. We then propose a model for evaluating the fusion of the three most important factors: information, communication, and security. We then present the concept of the fusion evaluation cubic for the GCPS quantitative analysis model. Through these models, we can determine whether a more realistic state of the GCPS can be found by enhancing the fusion between cyberspace and physical space. Finally, we conclude that the degree of fusion between the two spaces is very important, not only considering the performance of the whole business process, but also considering security.
基金Supported by National Natural Science Foundation of China(Grant No.61272428)PhD Programs Foundation of Ministry of Education of China(Grant No.20120002110067)
文摘Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.