Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
Using proteomics, previous work in our laboratory identified five mitochondrial related proteins [citrate synthase (CS), glucose-regulated protein 75 (GRP75), heat shock protein 60 (HSP60), prohibitin (PHB), voltage-d...Using proteomics, previous work in our laboratory identified five mitochondrial related proteins [citrate synthase (CS), glucose-regulated protein 75 (GRP75), heat shock protein 60 (HSP60), prohibitin (PHB), voltage-dependent anion channel 1 (VDAC1)] to be differentially expressed in primary cortical neuronal cultures following preconditioning treatments?[1] [2]. To investigate a protective or damaging role of these five proteins in neurons, we used RNAi constructs to knockdown and adenoviral vectors to over-express the proteins in cortical neuronal cultures prior to exposure to three ischemia-related injury models: excitotoxicity (L-glutamic acid), oxidative stress (hydrogen peroxide) and in vitro ischemia (oxygen-glucose deprivation). We observed that down-regulating these mitochondrial proteins had no effect on neuronal viability, in any injury model. By contrast, over-expression of PHB exacerbated cell death in the hydrogen peroxide and L-glutamic acid injury models. These findings indicate that PHB plays a neurodamaging role following oxidative and excitotoxic stress and suggests that the protein is a potential therapeutic target for the design of drugs to limit neuronal death following cerebral ischemia and other forms of brain injury.展开更多
Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two cult...Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic charwteristics of the osteoblast cells were studied via cell number counting, morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells ure of good biologic characteristics. In comparison with the explant technique, the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.展开更多
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
文摘Using proteomics, previous work in our laboratory identified five mitochondrial related proteins [citrate synthase (CS), glucose-regulated protein 75 (GRP75), heat shock protein 60 (HSP60), prohibitin (PHB), voltage-dependent anion channel 1 (VDAC1)] to be differentially expressed in primary cortical neuronal cultures following preconditioning treatments?[1] [2]. To investigate a protective or damaging role of these five proteins in neurons, we used RNAi constructs to knockdown and adenoviral vectors to over-express the proteins in cortical neuronal cultures prior to exposure to three ischemia-related injury models: excitotoxicity (L-glutamic acid), oxidative stress (hydrogen peroxide) and in vitro ischemia (oxygen-glucose deprivation). We observed that down-regulating these mitochondrial proteins had no effect on neuronal viability, in any injury model. By contrast, over-expression of PHB exacerbated cell death in the hydrogen peroxide and L-glutamic acid injury models. These findings indicate that PHB plays a neurodamaging role following oxidative and excitotoxic stress and suggests that the protein is a potential therapeutic target for the design of drugs to limit neuronal death following cerebral ischemia and other forms of brain injury.
文摘Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic charwteristics of the osteoblast cells were studied via cell number counting, morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells ure of good biologic characteristics. In comparison with the explant technique, the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.