局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Pertur...局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。展开更多
针对最大二阶循环平稳盲解卷积(Maximum second order cyclostationary blind deconvolution,CYCBD)的轴承故障诊断效果取决于选取的故障特征频率的精度以及滤波器的长度的问题,提出了用布谷鸟搜索算法(Cuckoo search algorithm,CSA)优...针对最大二阶循环平稳盲解卷积(Maximum second order cyclostationary blind deconvolution,CYCBD)的轴承故障诊断效果取决于选取的故障特征频率的精度以及滤波器的长度的问题,提出了用布谷鸟搜索算法(Cuckoo search algorithm,CSA)优化CYCBD,并以改进的最大谐波显著性指标(Improved maximum harmonic significance index,IHSI)为优化依据的诊断方法。该方法首先要预估故障特征频率以及滤波器长度的搜索范围,然后利用CSA比较不同故障特征频率以及滤波器长度下解卷积信号的IHSI值,并选取最大IHSI值对应的故障特征频率和滤波器长度作为CYCBD的输入参数,最后对解卷积后的信号进行平方包络来提取故障特征。仿真和实验结果表明,CSA能够高效地寻找出精确的故障特征频率以及合适的滤波器长度,从而确保CYCBD的解卷积效果,而CYCBD与最小熵解卷积(Minimum entropy deconvolution,MED)、最大相关峭度解卷积(Maximum correlation kurtosis deconvolution,MCKD)的比较显示,CYCBD拥有更强的故障特征提取能力。展开更多
文摘局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。