Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman s...Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role.展开更多
To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC ...To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC 1#was obtained by solvothermal synthesis,drying and purification in vacuum at 120℃using trimesic acid(H3BTC)and copper nitrate trihydrate(Cu(NO_(3))2·3H_(2)O)as raw materials;likewise,sample Cu-BTC 3#was obtained at 200℃.Sample Cu-BTC 2#was obtained by hydrothermal synthesis,drying and purification in air(metal-organic frameworks,1,3,5-benzene tricarboxylic acid copper).The two types of materials were tested in terms of the NO_(2) adsorption,and then the specific surface area,pore volume,NO_(2) adsorption performance,phase composition,microstructure and thermal stability of the adsorbent materials were exploredvia N_(2) physical adsorption-desorption,SEM,XRD and TG characterization.The results show that:(1)the Cu-BTC samples have higher adsorption capacity than the calcium-silica adsorbent,in which sample Cu-BTC 3#has the largest specific surface area and pore volume,thus adsorption capacity for NO_(2);(2)the calcium-silica adsorbent has better thermal stability and lower total mass loss during the entire process than the Cu-BTC samples;sample Cu-BTC 2#has the best thermal stability among the three Cu-BTC samples,and the metal Cu active sites of the Cu-BTC samples can be exposed at least above 150℃.展开更多
Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the inf...Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22℃. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.展开更多
基金Project(738010004)supported by the Project of Low Concentration Sulfur Dioxide Flue Gas Treatment,ChinaProject(2017GK4010)supported by the Scientific and Technological Breakthrough and Major Achievements Transformation of Strategic Emerging Industries of Hunan Province in 2017,China
文摘Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role.
基金supported by the National Natural Science Foundation of China(No.51472220 and No.51872265)Collaborative Innovation Major Special Project of Zhengzhou(No.20XTZX12025)。
文摘To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC 1#was obtained by solvothermal synthesis,drying and purification in vacuum at 120℃using trimesic acid(H3BTC)and copper nitrate trihydrate(Cu(NO_(3))2·3H_(2)O)as raw materials;likewise,sample Cu-BTC 3#was obtained at 200℃.Sample Cu-BTC 2#was obtained by hydrothermal synthesis,drying and purification in air(metal-organic frameworks,1,3,5-benzene tricarboxylic acid copper).The two types of materials were tested in terms of the NO_(2) adsorption,and then the specific surface area,pore volume,NO_(2) adsorption performance,phase composition,microstructure and thermal stability of the adsorbent materials were exploredvia N_(2) physical adsorption-desorption,SEM,XRD and TG characterization.The results show that:(1)the Cu-BTC samples have higher adsorption capacity than the calcium-silica adsorbent,in which sample Cu-BTC 3#has the largest specific surface area and pore volume,thus adsorption capacity for NO_(2);(2)the calcium-silica adsorbent has better thermal stability and lower total mass loss during the entire process than the Cu-BTC samples;sample Cu-BTC 2#has the best thermal stability among the three Cu-BTC samples,and the metal Cu active sites of the Cu-BTC samples can be exposed at least above 150℃.
文摘Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22℃. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.