Catalytic elimination of formaldehyde(HCHO) was investigated over Cu-Al_2O_3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO_2 occurs at room temperature, but the adsorption of H...Catalytic elimination of formaldehyde(HCHO) was investigated over Cu-Al_2O_3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO_2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity(GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD) showed that HCHO was completely oxidized into HCOOH over Cu-Al_2O_3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO_2 over the catalyst surface, and the deactivated Cu-Al_2O_3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al_2O_3, Cu dramatically lowered the decomposition temperature of HCOOH into CO_2. It was shown that Cu-Al_2O_3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.展开更多
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated s...Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.展开更多
Hydrogen production by catalytic steam reforming of methanol over a series of coprecipitated Cu/ZnO/Al2O3 catalysts under atmospheric pressure in a microreactor has been studied Effects of catalyst composition...Hydrogen production by catalytic steam reforming of methanol over a series of coprecipitated Cu/ZnO/Al2O3 catalysts under atmospheric pressure in a microreactor has been studied Effects of catalyst composition, reaction temperature and activation conditions on the catalytic activity have been investigated Crystal phases of catalysts were analyzed by XRD The results showed that Cu/ZnO/Al2O3 catalysts displayed high activity and selectivity for hydrogen and stability The optimized molar ratio is Cu/Zn=10, a maximum methanol conversion of 994?mol%, hydrogen selectivity of 999?mol% and CO molar fraction of 0007% were obtained in the steam reforming reaction with the catalyst containing 45?mol% copper XRD results showed that the diffraction peaks of CuO in the catalyst were clearly lower and broaden It indicated that high dispersion of small copper crystallites on the catalyst surface was formed under the calcination conditions It is suggested that the good performance of Cu/ZnO/Al2O3 catalysts partly resulted from well dispersed展开更多
In view of not uniformity in conventional coprecipitation preparation, urea was used as the precursor of precipitator to prepare Cu/ZnO/Al2O3 catalysts for methanol synthesis. In the method, urea was dissolved in nitr...In view of not uniformity in conventional coprecipitation preparation, urea was used as the precursor of precipitator to prepare Cu/ZnO/Al2O3 catalysts for methanol synthesis. In the method, urea was dissolved in nitrate solution and hydrolyzed to produce OH- as precipitator after the solution was heated to 90℃. After 6h, the precipitation was accomplished. The evaluation results of the catalyst activity showed that this catalyst had comparable catalytic activities to the industrial catalyst, and reached its maximum activity at 250℃. At reaction conditions of 250℃, 3MPa,and SV=7600h-1, the STY of methanol was 0.38g/(mL·h) with syngas compositing of H2,CO, CO2, and N2 atmolar ratio of 65.9∶27.1∶2.9∶4.1. X-ray Diffraction (XRD) revealed that the particle size of CuO and ZnO was about 200nm, and Al existed in the form of ZnAl2O4 spinel in the catalysts.展开更多
基金The National Natural Science Foundation of China(No. 40275038)
文摘Catalytic elimination of formaldehyde(HCHO) was investigated over Cu-Al_2O_3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO_2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity(GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD) showed that HCHO was completely oxidized into HCOOH over Cu-Al_2O_3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO_2 over the catalyst surface, and the deactivated Cu-Al_2O_3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al_2O_3, Cu dramatically lowered the decomposition temperature of HCOOH into CO_2. It was shown that Cu-Al_2O_3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.
基金Project supported by the National Natural Science Foundation of China(51471023,51571021,11775018)the Beijing Municipal Natural Science Foundation(2152031)
文摘Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.
文摘Hydrogen production by catalytic steam reforming of methanol over a series of coprecipitated Cu/ZnO/Al2O3 catalysts under atmospheric pressure in a microreactor has been studied Effects of catalyst composition, reaction temperature and activation conditions on the catalytic activity have been investigated Crystal phases of catalysts were analyzed by XRD The results showed that Cu/ZnO/Al2O3 catalysts displayed high activity and selectivity for hydrogen and stability The optimized molar ratio is Cu/Zn=10, a maximum methanol conversion of 994?mol%, hydrogen selectivity of 999?mol% and CO molar fraction of 0007% were obtained in the steam reforming reaction with the catalyst containing 45?mol% copper XRD results showed that the diffraction peaks of CuO in the catalyst were clearly lower and broaden It indicated that high dispersion of small copper crystallites on the catalyst surface was formed under the calcination conditions It is suggested that the good performance of Cu/ZnO/Al2O3 catalysts partly resulted from well dispersed
文摘In view of not uniformity in conventional coprecipitation preparation, urea was used as the precursor of precipitator to prepare Cu/ZnO/Al2O3 catalysts for methanol synthesis. In the method, urea was dissolved in nitrate solution and hydrolyzed to produce OH- as precipitator after the solution was heated to 90℃. After 6h, the precipitation was accomplished. The evaluation results of the catalyst activity showed that this catalyst had comparable catalytic activities to the industrial catalyst, and reached its maximum activity at 250℃. At reaction conditions of 250℃, 3MPa,and SV=7600h-1, the STY of methanol was 0.38g/(mL·h) with syngas compositing of H2,CO, CO2, and N2 atmolar ratio of 65.9∶27.1∶2.9∶4.1. X-ray Diffraction (XRD) revealed that the particle size of CuO and ZnO was about 200nm, and Al existed in the form of ZnAl2O4 spinel in the catalysts.