The title compound was prepared by mixing the aqueous solution of carbohydrazide and manganese perchlorate. It was characterized by X ray diffraction. The crystal of the title compound, [Mn(CHZ) 3](ClO 4) 2, belongs t...The title compound was prepared by mixing the aqueous solution of carbohydrazide and manganese perchlorate. It was characterized by X ray diffraction. The crystal of the title compound, [Mn(CHZ) 3](ClO 4) 2, belongs to space group P2 1/n with the crystal parameters a=1.019 7(2) nm, b=0.859 3(1) nm, c=2.141 2(3) nm, β=100.86(1)°; V=1.842 6(5) nm3, Z=4. The results show that all carbohydrazides are coordinated as bidentate by the oxygen atom of the carbonyl group and one nitrogen atom of the end group, forming a distorted octahedron. The explosive properties of the title complex were tested, the application in the engineering detonator was investigated.展开更多
A new crystal form of diammonium 5,5'-bistetrazole-1,1'-diolate (1) was prepared by two novel methods and fully characterized by using IR, NMR spectroscopy, elementary analysis, single crystal X-ray crystallograph...A new crystal form of diammonium 5,5'-bistetrazole-1,1'-diolate (1) was prepared by two novel methods and fully characterized by using IR, NMR spectroscopy, elementary analysis, single crystal X-ray crystallography and thermal gravity/differential thermal analysis (TG/DTA). Crystalline 1 was found as monoclinic and space group of P21/c (14). The TG/DTA analysis showed that the decomposition temperature of 1 was 287.8℃ with a mass loss of 91.2% in the range of 220-300℃ at a heating rate of 5℃/min. The sensitivities test towards impact, friction of 1 indicated that 1 has much lower sensitivities than those of RDX/HMX and is comparable to those of TNT, which suggested that 1 could be used as a good candidate of new insensitive energetic compound.展开更多
A polycyclic caged compound with high strain—hexanitrohexaazaisowurtzitane (HNIW)—has been synthesized via a three-step reaction: condensation, hydrogenolysis debenzylation and nitrolysis, starting with benzylamine ...A polycyclic caged compound with high strain—hexanitrohexaazaisowurtzitane (HNIW)—has been synthesized via a three-step reaction: condensation, hydrogenolysis debenzylation and nitrolysis, starting with benzylamine and glyoxal. HNIW is the most powerful high energy density compound (HEDC) ever tested. β-HNIW possesses a caged structure consisting of two five-membered rings and one six-membered ring with a nitro group attached to each of the six bridging nitrogens. The nitro group lies basically within a plane. The lengths of C—C bonds of β-HNIW range from 0. 156 nm to 0.159 nm, 0.002–0.005 nm longer than the sp3 C-C bond. The β-HNIW’s crystal belongs to orthorhombic system and space groupPca21 with parameters:a = 0.9670 (2),b = 1.1616 (2),c = 1.3032 (3) nm;V = 1.4638(5) nm3,Z = 4; Dc = 1.989 g/cm3 and Dm = 1.982 g/cm3.展开更多
Two isostructural metal-organic frameworks,[NO3][M3(H2O)3O(TBA)3]-2DMF-6H2O(1 and 2)[M=In and Fe, H2TBA=4-(1H-tetrazol-5-yl)-benzoic acid], have been successfully synthesized. Compounds 1 and 2 have three-dimensional ...Two isostructural metal-organic frameworks,[NO3][M3(H2O)3O(TBA)3]-2DMF-6H2O(1 and 2)[M=In and Fe, H2TBA=4-(1H-tetrazol-5-yl)-benzoic acid], have been successfully synthesized. Compounds 1 and 2 have three-dimensional structures bridged via the typical 6-connected tri-nuclear cluster units M3O(COO)6 and linear linker H2TBA. The whole 3D framework possesses a 6-connected acs topology. Notably, by the fluorescence technique, compound 1 can detect nitro explosives through fluorescence quenching effect, especially for 2,4,6-trinitrophenol(TNP, Ksv=3.64×10^4 L/mol). Furthermore, the fluorescence spectrum red shifts as the number of NO2 group increases. Based on the aforementioned consideration, compound 1 can be considered as a potential luminescent probe for the detection of TNP.展开更多
Important crystal faces that dominate the crystal morphology of royal demolition explosive (RDX) in vacuum were analyzed with the attachment energy (AE) method. Molecular dynamics (MD) simulations were used to c...Important crystal faces that dominate the crystal morphology of royal demolition explosive (RDX) in vacuum were analyzed with the attachment energy (AE) method. Molecular dynamics (MD) simulations were used to calculate the interaction energies between these crystal faces and different solvent molecules for an attachment energy correction. Growth habits in the presence of different solvents were generated. The results showed that some crystal faces in solutions became morphologically more important than that in vacuum while others became less important. Thus, crystal shape and surface property changed a lot with the variation of crystal faces. The results from calcula- tion were in agreement with those from the re-crystallization experiment, which indicated that cyclohexanone (CH) was a promising solvent to modify the crystal morphology of RDX for obtaining products with regular shape and high purity, while butyrolactone (BL) played a great role in improving the surface electrostatic property of RDX.展开更多
文摘The title compound was prepared by mixing the aqueous solution of carbohydrazide and manganese perchlorate. It was characterized by X ray diffraction. The crystal of the title compound, [Mn(CHZ) 3](ClO 4) 2, belongs to space group P2 1/n with the crystal parameters a=1.019 7(2) nm, b=0.859 3(1) nm, c=2.141 2(3) nm, β=100.86(1)°; V=1.842 6(5) nm3, Z=4. The results show that all carbohydrazides are coordinated as bidentate by the oxygen atom of the carbonyl group and one nitrogen atom of the end group, forming a distorted octahedron. The explosive properties of the title complex were tested, the application in the engineering detonator was investigated.
文摘A new crystal form of diammonium 5,5'-bistetrazole-1,1'-diolate (1) was prepared by two novel methods and fully characterized by using IR, NMR spectroscopy, elementary analysis, single crystal X-ray crystallography and thermal gravity/differential thermal analysis (TG/DTA). Crystalline 1 was found as monoclinic and space group of P21/c (14). The TG/DTA analysis showed that the decomposition temperature of 1 was 287.8℃ with a mass loss of 91.2% in the range of 220-300℃ at a heating rate of 5℃/min. The sensitivities test towards impact, friction of 1 indicated that 1 has much lower sensitivities than those of RDX/HMX and is comparable to those of TNT, which suggested that 1 could be used as a good candidate of new insensitive energetic compound.
基金Project supported by the Advanced Research Funds (12060451867) from the Commission of Science and Technology for National Defence.
文摘A polycyclic caged compound with high strain—hexanitrohexaazaisowurtzitane (HNIW)—has been synthesized via a three-step reaction: condensation, hydrogenolysis debenzylation and nitrolysis, starting with benzylamine and glyoxal. HNIW is the most powerful high energy density compound (HEDC) ever tested. β-HNIW possesses a caged structure consisting of two five-membered rings and one six-membered ring with a nitro group attached to each of the six bridging nitrogens. The nitro group lies basically within a plane. The lengths of C—C bonds of β-HNIW range from 0. 156 nm to 0.159 nm, 0.002–0.005 nm longer than the sp3 C-C bond. The β-HNIW’s crystal belongs to orthorhombic system and space groupPca21 with parameters:a = 0.9670 (2),b = 1.1616 (2),c = 1.3032 (3) nm;V = 1.4638(5) nm3,Z = 4; Dc = 1.989 g/cm3 and Dm = 1.982 g/cm3.
基金Supported by the Natural Science Foundation of Zhejiang Province,China(No.LQ18B010002).
文摘Two isostructural metal-organic frameworks,[NO3][M3(H2O)3O(TBA)3]-2DMF-6H2O(1 and 2)[M=In and Fe, H2TBA=4-(1H-tetrazol-5-yl)-benzoic acid], have been successfully synthesized. Compounds 1 and 2 have three-dimensional structures bridged via the typical 6-connected tri-nuclear cluster units M3O(COO)6 and linear linker H2TBA. The whole 3D framework possesses a 6-connected acs topology. Notably, by the fluorescence technique, compound 1 can detect nitro explosives through fluorescence quenching effect, especially for 2,4,6-trinitrophenol(TNP, Ksv=3.64×10^4 L/mol). Furthermore, the fluorescence spectrum red shifts as the number of NO2 group increases. Based on the aforementioned consideration, compound 1 can be considered as a potential luminescent probe for the detection of TNP.
文摘Important crystal faces that dominate the crystal morphology of royal demolition explosive (RDX) in vacuum were analyzed with the attachment energy (AE) method. Molecular dynamics (MD) simulations were used to calculate the interaction energies between these crystal faces and different solvent molecules for an attachment energy correction. Growth habits in the presence of different solvents were generated. The results showed that some crystal faces in solutions became morphologically more important than that in vacuum while others became less important. Thus, crystal shape and surface property changed a lot with the variation of crystal faces. The results from calcula- tion were in agreement with those from the re-crystallization experiment, which indicated that cyclohexanone (CH) was a promising solvent to modify the crystal morphology of RDX for obtaining products with regular shape and high purity, while butyrolactone (BL) played a great role in improving the surface electrostatic property of RDX.