A novel inorganic-organic hybrid supramolecular compound,[(3-nitroanilinium^+)(18-crown-6)][IO4](CH3OH)(1),was discovered as phase-transition materials displaying dielectric anomalous behaviors.The yellow blo...A novel inorganic-organic hybrid supramolecular compound,[(3-nitroanilinium^+)(18-crown-6)][IO4](CH3OH)(1),was discovered as phase-transition materials displaying dielectric anomalous behaviors.The yellow block crystal formed by N-H…O hydrogen bonding that made contact through the cavity of 18-crown-6 was characterized by single-crystal X-ray diffraction,elemental analysis,infrared analysis,thermogravimetric analysis,differential scanning calorimetry,and potential-energy calculations.Differential scanning calorimetry measurements indicate that the compound experiences a reversible phase transition at around 220 K.Temperature-dependent dielectric measurements further confirm the phase transitions.Potential-energy calculations demonstrate that the phase transition occurs due to the molecular order-disorder rotation of CH3OH,whereas the space grouping of the crystal remains unchanged.展开更多
基金support of The National Basic Research Program of China(2013CB933201)West Light Foundation of The Chinese Academy of Sciences,Science and Technology Program of Gansu Province(1204GKCA063)+1 种基金Science and Technology Program of Lanzhou City(2012-2-103)Key Laboratory of Oil&Gas Fine Chemicals,Ministry of Education&Xinjiang Uyghur Autonomous Region,Xinjiang University(XJDX0908-2011-03)is gratefully acknowledged
基金supported by National Natural Science Foundation of China (No. 21561030)Prophase-sustentation Fund of Xinjiang Agricultural University (Nos. XJAU201410 and XJAU201511)
文摘A novel inorganic-organic hybrid supramolecular compound,[(3-nitroanilinium^+)(18-crown-6)][IO4](CH3OH)(1),was discovered as phase-transition materials displaying dielectric anomalous behaviors.The yellow block crystal formed by N-H…O hydrogen bonding that made contact through the cavity of 18-crown-6 was characterized by single-crystal X-ray diffraction,elemental analysis,infrared analysis,thermogravimetric analysis,differential scanning calorimetry,and potential-energy calculations.Differential scanning calorimetry measurements indicate that the compound experiences a reversible phase transition at around 220 K.Temperature-dependent dielectric measurements further confirm the phase transitions.Potential-energy calculations demonstrate that the phase transition occurs due to the molecular order-disorder rotation of CH3OH,whereas the space grouping of the crystal remains unchanged.