The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {Fe_(2)^...The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {Fe_(2)^(Ⅲ)Fe^(Ⅱ)} desolvated complex {[(pzTp)Fe^(Ⅲ)-(CN)3]2[Fe^(Ⅱ)(L)]} (1), obtained through single-crystal-to-single-crystal (SCSC) transformation from its solvated phase {[(pzTp)-Fe^(Ⅲ)(CN)3]2[Fe^(Ⅱ)(L)]}·2CH_(3)OH·5H_(2)O (1·sol). Remarkably, 1 exhibited unprecedented three-step transition in magnetization with wide thermal hysteresis (44, 40, and 36 K) in the temperature range of 80–320 K. The detailed studies demonstrated that the tristable character originates from both an order-disorder structural phase transition (SPT) and a strongly cooperative two-step spin crossover (SCO) process. This work thus provides a new promising strategy for realizing multiple bistablity in magnetization by introducing two different transitions.展开更多
Spin crossover(SCO)is commonly accompanied by a synchronous phase transition.A few phase transitioncoupled SCO compounds have been reported,yet the synergy between SCO and phase transition on different time scales has...Spin crossover(SCO)is commonly accompanied by a synchronous phase transition.A few phase transitioncoupled SCO compounds have been reported,yet the synergy between SCO and phase transition on different time scales has not been explored.Herein,we report an[Fe(H-5-Cl-thsa-Et)(5-Cl-thsa-Et)]·H2O(1·H2O;H2-5-Cl-thsa-Et=5-chloro-salicylaldehyde ethylthiosemicarbazone)Fe(III)complex that displays a two-dimensional supramolecular structure and SCO behavior above room temperature.Its dehydrated form1 exhibits a two-step spin transition with aplateau in the temperature-dependent magnetization(M−T)curve at room temperature and a 51 K thermal hysteresis loop(Tc↑↓=299/248 K)at a rate of 5 K/min.The improved SCOperformance in 1 could be attributed to the stronger intralayer but weaker interlayer interactions,which is supported by single-crystal structural analysis and density functional theory calculations.Remarkably,complex 1 displays an unusual scan rate-dependent SCO behavior at rates of 0.5−30 K/min,in whichM−T curveplateaus appear at lower scan rates(<10 K/min)but vanish at faster scan rates(≥10 K/min).Scan rate-dependent differential scanning calorimetry,powder X-ray diffractometry,timedependent magnetic moment decays,and infrared spectroscopy consistently reveal that the slow structural relaxation is coupled with a slowcrystallographic phase transition,which is the mechanism for the unusual scan rate-dependent SCO.展开更多
The engineering of switchable materials with controllable stimuli-responsive multistability remains challenging in materials science.Herein,we present syntheses and structural and magnetic studies of a one-dimensional...The engineering of switchable materials with controllable stimuli-responsive multistability remains challenging in materials science.Herein,we present syntheses and structural and magnetic studies of a one-dimensional cobalt(Ⅱ)coordination polymer[(enbzp)Co(bpy)](ClO_(4))_(2)·-MeOH·H2O(1;enbzp=N,N′-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine,bpy=4,4′-bipyridine)and its desolvated analogue[(enbzp)Co(bpy)](ClO_(4))_(2)(2),obtained by reversible single-crystal-to-single-crystal(SCSC)transformation.展开更多
基金supported by the Stable Support Plan Program of Shenzhen Natural Science Fund (20200925151834005)the National Natural Science Foundation of China (21671095)the China Postdoctoral Science Foundation (2020M682763)。
文摘The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {Fe_(2)^(Ⅲ)Fe^(Ⅱ)} desolvated complex {[(pzTp)Fe^(Ⅲ)-(CN)3]2[Fe^(Ⅱ)(L)]} (1), obtained through single-crystal-to-single-crystal (SCSC) transformation from its solvated phase {[(pzTp)-Fe^(Ⅲ)(CN)3]2[Fe^(Ⅱ)(L)]}·2CH_(3)OH·5H_(2)O (1·sol). Remarkably, 1 exhibited unprecedented three-step transition in magnetization with wide thermal hysteresis (44, 40, and 36 K) in the temperature range of 80–320 K. The detailed studies demonstrated that the tristable character originates from both an order-disorder structural phase transition (SPT) and a strongly cooperative two-step spin crossover (SCO) process. This work thus provides a new promising strategy for realizing multiple bistablity in magnetization by introducing two different transitions.
基金supported by the National Natural Science Foundation of China(NSFCnos.21971124 and 22035003).
文摘Spin crossover(SCO)is commonly accompanied by a synchronous phase transition.A few phase transitioncoupled SCO compounds have been reported,yet the synergy between SCO and phase transition on different time scales has not been explored.Herein,we report an[Fe(H-5-Cl-thsa-Et)(5-Cl-thsa-Et)]·H2O(1·H2O;H2-5-Cl-thsa-Et=5-chloro-salicylaldehyde ethylthiosemicarbazone)Fe(III)complex that displays a two-dimensional supramolecular structure and SCO behavior above room temperature.Its dehydrated form1 exhibits a two-step spin transition with aplateau in the temperature-dependent magnetization(M−T)curve at room temperature and a 51 K thermal hysteresis loop(Tc↑↓=299/248 K)at a rate of 5 K/min.The improved SCOperformance in 1 could be attributed to the stronger intralayer but weaker interlayer interactions,which is supported by single-crystal structural analysis and density functional theory calculations.Remarkably,complex 1 displays an unusual scan rate-dependent SCO behavior at rates of 0.5−30 K/min,in whichM−T curveplateaus appear at lower scan rates(<10 K/min)but vanish at faster scan rates(≥10 K/min).Scan rate-dependent differential scanning calorimetry,powder X-ray diffractometry,timedependent magnetic moment decays,and infrared spectroscopy consistently reveal that the slow structural relaxation is coupled with a slowcrystallographic phase transition,which is the mechanism for the unusual scan rate-dependent SCO.
基金supported by the Stable Support Plan Program of Shenzhen Natural Science Fund(no.20200925151834005)the National Natural Science Foundation of China(nos.21671095,21901108,and 22173043)。
文摘The engineering of switchable materials with controllable stimuli-responsive multistability remains challenging in materials science.Herein,we present syntheses and structural and magnetic studies of a one-dimensional cobalt(Ⅱ)coordination polymer[(enbzp)Co(bpy)](ClO_(4))_(2)·-MeOH·H2O(1;enbzp=N,N′-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine,bpy=4,4′-bipyridine)and its desolvated analogue[(enbzp)Co(bpy)](ClO_(4))_(2)(2),obtained by reversible single-crystal-to-single-crystal(SCSC)transformation.