Extensive data of undrained shear strength for various remolded soils are compiled to normalize the remolded undrained strength. Remolded soils have a wide spectrum of liquid limits ranging from 25% to 412%. It is fou...Extensive data of undrained shear strength for various remolded soils are compiled to normalize the remolded undrained strength. Remolded soils have a wide spectrum of liquid limits ranging from 25% to 412%. It is found that the remolded undrained strength is a function of water content and liquid limit. Furthermore, a simple index designated as normalized water content w * is introduced for normalizing remolded undrained strength for various soils. The normalized water content w * is the ratio of water content to liquid limit. The relationship between the remolded undrained strength and the normalized water content can be expressed by a simple equation. The new simple equation is not only valuable theoretically for helping in assessing the in situ mechanical behavior, but also useful to ocean engineering practice.展开更多
Glacial tills are widely distributed in Tibet, China, and are highly susceptible to landslides under intense rainfalls. Failures of the slope during rainfall are closely related to the shear behavior of glacial tills ...Glacial tills are widely distributed in Tibet, China, and are highly susceptible to landslides under intense rainfalls. Failures of the slope during rainfall are closely related to the shear behavior of glacial tills at different moisture conditions. This study investigates the shear behavior and critical state of saturated and unsaturated glacial tills through a series of drained direct shear tests. The tests were conducted on two types of compacted glacial tills with different water contents and total normal stresses. A strain softening mode of failure is observed for all water content conditions accompanied by noticeable dilation. Dilatancy is found to decrease with increasing water content. Unsaturated samples showed increased rates of dilation as water content is decreased for all applied normal stresses a behavior which cannot be predicted well by classical stressdilatancy models. Furthermore, it was found that the Critical State Line(CSL), plotted on the(e-ln) plane, can be used to define the shear behavior of unsaturated glacial tills at different water contents.The CSL of saturated glacial tills run parallel to this line. The experimental results in this study are aimed to provide a basic understanding to the underlying failure mechanisms of glacial tills.展开更多
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
基金ThisresearchprojectwasfinanciallysupportedbytheMinistryofScienceandTechnology Japan (DomesticResearchFellowship 1999 2 0 0 1) .
文摘Extensive data of undrained shear strength for various remolded soils are compiled to normalize the remolded undrained strength. Remolded soils have a wide spectrum of liquid limits ranging from 25% to 412%. It is found that the remolded undrained strength is a function of water content and liquid limit. Furthermore, a simple index designated as normalized water content w * is introduced for normalizing remolded undrained strength for various soils. The normalized water content w * is the ratio of water content to liquid limit. The relationship between the remolded undrained strength and the normalized water content can be expressed by a simple equation. The new simple equation is not only valuable theoretically for helping in assessing the in situ mechanical behavior, but also useful to ocean engineering practice.
基金the financial support from the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (grant no. QYZDB-SSW-DQC010)the Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS)
文摘Glacial tills are widely distributed in Tibet, China, and are highly susceptible to landslides under intense rainfalls. Failures of the slope during rainfall are closely related to the shear behavior of glacial tills at different moisture conditions. This study investigates the shear behavior and critical state of saturated and unsaturated glacial tills through a series of drained direct shear tests. The tests were conducted on two types of compacted glacial tills with different water contents and total normal stresses. A strain softening mode of failure is observed for all water content conditions accompanied by noticeable dilation. Dilatancy is found to decrease with increasing water content. Unsaturated samples showed increased rates of dilation as water content is decreased for all applied normal stresses a behavior which cannot be predicted well by classical stressdilatancy models. Furthermore, it was found that the Critical State Line(CSL), plotted on the(e-ln) plane, can be used to define the shear behavior of unsaturated glacial tills at different water contents.The CSL of saturated glacial tills run parallel to this line. The experimental results in this study are aimed to provide a basic understanding to the underlying failure mechanisms of glacial tills.
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.