In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equ...In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analyzed for a third test problem, nu-merical solutions as well as exact solutions for different values of viscosity are calculated and we find that the numerical solutions are very close to exact solution.展开更多
We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration an...We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with relatively minimal computational effort. The results showed that use of the present approach in the simulation is very applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches for such physical applications.展开更多
This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using...This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.展开更多
文摘In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analyzed for a third test problem, nu-merical solutions as well as exact solutions for different values of viscosity are calculated and we find that the numerical solutions are very close to exact solution.
文摘We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with relatively minimal computational effort. The results showed that use of the present approach in the simulation is very applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches for such physical applications.
文摘This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.