Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, ...Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%–12% Cr steels with nickel(Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700℃ and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%–12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650℃. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%–12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.展开更多
采用DIL805L型膨胀仪研究了弹簧钢52Cr Mo V4连续冷却相变组织变化规律,分析了合金元素和冷却速度对CCT曲线、相变组织和显微硬度的影响。结果表明:Cr、Mo、V、Mn等元素的加入使得弹簧钢52Cr Mo V4珠光体和贝氏体转变曲线完全分离,可以...采用DIL805L型膨胀仪研究了弹簧钢52Cr Mo V4连续冷却相变组织变化规律,分析了合金元素和冷却速度对CCT曲线、相变组织和显微硬度的影响。结果表明:Cr、Mo、V、Mn等元素的加入使得弹簧钢52Cr Mo V4珠光体和贝氏体转变曲线完全分离,可以在较宽的冷却速度范围内得到马氏体+贝氏体组织,当冷却速度大于等于5℃/s时,连续冷却转变获得单一的马氏体组织。冷却速度增加,促使了连续冷却转变后的组织细化,显微硬度增大。展开更多
Four kinds of P110 grade tube steels containing different chromium contents were designed to probe the in- fluence of Cr on the properties of tube steel. The microstrueture, mechanical properties and corrosion behavio...Four kinds of P110 grade tube steels containing different chromium contents were designed to probe the in- fluence of Cr on the properties of tube steel. The microstrueture, mechanical properties and corrosion behavior of the four kinds of P110 grade tube steels were studied deeply and thoroughly. The analysis of the mechanical properties indicated that tensile strength and yield strength of the steel plates were improved, while transverse and longitudinal impact energy and elongation first increased and then decreased when Cr content rose. The impact energy and elonga tion reached the peak when Cr content was 1 ~. Cr precipitates were found only in 3 ~ Cr steel, with (Nb, Ti)(C, N) or Nb(C,N) as the core of precipitation and then grew up. The corrosion experiments demonstrated that the scales on the four steels had a two layer structure under the corrosion of CO2 and H2 S. The outer layer was mainly com- posed of FeS or FeS1 x and the inner layer consisted of FeCOa and Cr compounds. Cr was rich in the inner layer and the Cr content of the inner layer increased with the Cr content in matrix. The enriched Cr enhanced the compactness of the scales, further hindering the diffusion of ions from liquid to the surface of steel, thus reducing corrosion rate.展开更多
To investigate the interaction mechanism between 95 Cr saw-wire steel and different refractories,we conducted laboratory experiments at 1873 K.Five crucible materials(SiO2,Al2 O3,MgO·Al2 O3,MgO,and MgO-CaO)were u...To investigate the interaction mechanism between 95 Cr saw-wire steel and different refractories,we conducted laboratory experiments at 1873 K.Five crucible materials(SiO2,Al2 O3,MgO·Al2 O3,MgO,and MgO-CaO)were used.The results indicate that SiO2,Al2 O3,and MgO·Al2 O3 are not suitable for smelting low-oxygen,low-[Al]s 95 Cr saw-wire steel,mainly because they react with the elements in the molten steel and pollute the steel samples.By contrast,MgO-CaO is an ideal choice to produce 95 Cr saw-wire steel.It offers three advantages:(ⅰ)It does not decompose by itself at the steelmaking temperature of 1873 K because it exhibits good thermal stability;(ⅱ)[C],[Si],and[Mn]in molten steel cannot react with it to increase the[O]content;and(ⅲ)it not only desulfurizes and dephosphorizes but also removes Al2 O3 inclusions from the steel simultaneously.As a result,the contents of the main elements([C],[Si],[Mn],[Cr],N,T.O(total oxygen))in the steel are not affected and the content of impurity elements([Al]s,P,and S)can be perfectly controlled within the target range.Furthermore,the number and size of inclusions in the steel samples decrease sharply when the MgO-CaO crucible is used.展开更多
文摘Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%–12% Cr steels with nickel(Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700℃ and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%–12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650℃. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%–12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.
文摘采用DIL805L型膨胀仪研究了弹簧钢52Cr Mo V4连续冷却相变组织变化规律,分析了合金元素和冷却速度对CCT曲线、相变组织和显微硬度的影响。结果表明:Cr、Mo、V、Mn等元素的加入使得弹簧钢52Cr Mo V4珠光体和贝氏体转变曲线完全分离,可以在较宽的冷却速度范围内得到马氏体+贝氏体组织,当冷却速度大于等于5℃/s时,连续冷却转变获得单一的马氏体组织。冷却速度增加,促使了连续冷却转变后的组织细化,显微硬度增大。
基金Item Sponsored by National High-Tech Research and Development Program(863Program)of China(2012AA03A508)
文摘Four kinds of P110 grade tube steels containing different chromium contents were designed to probe the in- fluence of Cr on the properties of tube steel. The microstrueture, mechanical properties and corrosion behavior of the four kinds of P110 grade tube steels were studied deeply and thoroughly. The analysis of the mechanical properties indicated that tensile strength and yield strength of the steel plates were improved, while transverse and longitudinal impact energy and elongation first increased and then decreased when Cr content rose. The impact energy and elonga tion reached the peak when Cr content was 1 ~. Cr precipitates were found only in 3 ~ Cr steel, with (Nb, Ti)(C, N) or Nb(C,N) as the core of precipitation and then grew up. The corrosion experiments demonstrated that the scales on the four steels had a two layer structure under the corrosion of CO2 and H2 S. The outer layer was mainly com- posed of FeS or FeS1 x and the inner layer consisted of FeCOa and Cr compounds. Cr was rich in the inner layer and the Cr content of the inner layer increased with the Cr content in matrix. The enriched Cr enhanced the compactness of the scales, further hindering the diffusion of ions from liquid to the surface of steel, thus reducing corrosion rate.
基金support from the National Key Research and Development Program of China(No.2016YFB0300105)the Transformation Project of Major Scientific and Technological Achievements in Shenyang(No.Z17-5-003)the Fundamental Research Funds for the Central Universities(No.N172507002)。
文摘To investigate the interaction mechanism between 95 Cr saw-wire steel and different refractories,we conducted laboratory experiments at 1873 K.Five crucible materials(SiO2,Al2 O3,MgO·Al2 O3,MgO,and MgO-CaO)were used.The results indicate that SiO2,Al2 O3,and MgO·Al2 O3 are not suitable for smelting low-oxygen,low-[Al]s 95 Cr saw-wire steel,mainly because they react with the elements in the molten steel and pollute the steel samples.By contrast,MgO-CaO is an ideal choice to produce 95 Cr saw-wire steel.It offers three advantages:(ⅰ)It does not decompose by itself at the steelmaking temperature of 1873 K because it exhibits good thermal stability;(ⅱ)[C],[Si],and[Mn]in molten steel cannot react with it to increase the[O]content;and(ⅲ)it not only desulfurizes and dephosphorizes but also removes Al2 O3 inclusions from the steel simultaneously.As a result,the contents of the main elements([C],[Si],[Mn],[Cr],N,T.O(total oxygen))in the steel are not affected and the content of impurity elements([Al]s,P,and S)can be perfectly controlled within the target range.Furthermore,the number and size of inclusions in the steel samples decrease sharply when the MgO-CaO crucible is used.