The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are der...The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Mechanical properties and corrosion resistance of Si3N4 films are studied by using different experiment parameters, such as plasma enhanced chemical vapor deposition(PECVD) RF power, ratio of reaction gas, reaction pr...Mechanical properties and corrosion resistance of Si3N4 films are studied by using different experiment parameters, such as plasma enhanced chemical vapor deposition(PECVD) RF power, ratio of reaction gas, reaction pressure and working temperature. The etching process of Si3N4 is studied by inductively coupled plasma (ICP) with a gas mixture of SF6 and O2. The influence of the technique parameters, such as ICP power, DC bias, gas composition, total flow rate, on the etching selectivity of Si3N4/EPG533 which is used as a mask layer and the etching rate of Si3N4 is studied, in order to get a better etching selectivity of Si3N4/EPG533 with a faster etching rate of Si3N4. The optimized process parameters of etching Si3N4 by ICP are obtained after a series of experiments and analysis. Under the conditions of total ICP power of 250 W, DC bias of 50W, total flow rate of 40 sccm and O2 composition of 30%, the etching selectivity of 2.05 can be reached when Si3N4 etching rate is 336 nm/min.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
基金The present research work was financially supported by the National Natural Science Foundation of China.(No.19472042)
文摘The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
文摘Mechanical properties and corrosion resistance of Si3N4 films are studied by using different experiment parameters, such as plasma enhanced chemical vapor deposition(PECVD) RF power, ratio of reaction gas, reaction pressure and working temperature. The etching process of Si3N4 is studied by inductively coupled plasma (ICP) with a gas mixture of SF6 and O2. The influence of the technique parameters, such as ICP power, DC bias, gas composition, total flow rate, on the etching selectivity of Si3N4/EPG533 which is used as a mask layer and the etching rate of Si3N4 is studied, in order to get a better etching selectivity of Si3N4/EPG533 with a faster etching rate of Si3N4. The optimized process parameters of etching Si3N4 by ICP are obtained after a series of experiments and analysis. Under the conditions of total ICP power of 250 W, DC bias of 50W, total flow rate of 40 sccm and O2 composition of 30%, the etching selectivity of 2.05 can be reached when Si3N4 etching rate is 336 nm/min.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.