Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron ...Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron (MLP) artificial neural network (ANN) based prediction system was presented for predicting the leaf population chlorophyll content from the cotton plant images. As the training of this prediction system relied heavily on how well those leaf green pixels were separated from background noises in cotton plant images, a global thresholding algorithm and an omnidirectional scan noise filtering coupled with the hue histogram statistic method were designed for leaf green pixel extraction. With the obtained leaf green pixels, the system training was carried out by applying a back propagation algorithm. The proposed system was tested to predict the chlorophyll content from the cotton plant images. The results using the proposed system were in sound agreement with those obtained by the destructive method. The average prediction relative error for the chlorophyll density (μg cm^-2) in the 17 testing images was 8.41%.展开更多
Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the ...Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solu-tion. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was iso-lated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5′-untranslation region. Four plant ex-pression vectors were constructed for functional analysis of the promoter. Based on the pBI121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteris-tics.展开更多
For the first time, a nodulin-like gene promoter was isolated from Gossypium hirsutum L. Guo Y 18 by means of inverse PCR. Three plant expression vectors were constructed for functional identification of the promoter....For the first time, a nodulin-like gene promoter was isolated from Gossypium hirsutum L. Guo Y 18 by means of inverse PCR. Three plant expression vectors were constructed for functional identification of the promoter. These vectors were different only in promoter regions; three truncations of the nodulinlike promoter took the place of the CaMV35S promoter in the pBI 121 plant expression vector. Then, the three vectors were introduced into cotton plants via the pollen tube pathway. The expression patterns of the gus gene driven by nodulin-like promoter truncations were investigated in the offspring of transgenic cotton plants. Histochemical GUS staining and fluorescence quantitative analysis were performed to achieve this goal. The results showed that the nodulin-like promoter was a strong, highly reproductive organspecific promoter, which demonstrated a much higher driver activity than the CaMV35S promoter did in cotton reproductive organs, but relatively lower activity in vegetation. Identification of the speciality and strength-determining regions of the nodulin-like promoter was also undertaken.展开更多
基金supported by the Chinese Scholarship Council (CSC) and the Minzu University of China(CUN0246)
文摘Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron (MLP) artificial neural network (ANN) based prediction system was presented for predicting the leaf population chlorophyll content from the cotton plant images. As the training of this prediction system relied heavily on how well those leaf green pixels were separated from background noises in cotton plant images, a global thresholding algorithm and an omnidirectional scan noise filtering coupled with the hue histogram statistic method were designed for leaf green pixel extraction. With the obtained leaf green pixels, the system training was carried out by applying a back propagation algorithm. The proposed system was tested to predict the chlorophyll content from the cotton plant images. The results using the proposed system were in sound agreement with those obtained by the destructive method. The average prediction relative error for the chlorophyll density (μg cm^-2) in the 17 testing images was 8.41%.
基金This work was supported by the State“863”High Technology R&D Program(Grant Nos.2001AA222101&2001AA212011)National Special Project for Cotton Development From Agricultural Department of the ChineseGovernment.
文摘Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solu-tion. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was iso-lated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5′-untranslation region. Four plant ex-pression vectors were constructed for functional analysis of the promoter. Based on the pBI121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteris-tics.
基金国家高技术研究发展计划(863计划),the National Special Project for Cotton Development from Agricultural Department of the Chinese Government
文摘For the first time, a nodulin-like gene promoter was isolated from Gossypium hirsutum L. Guo Y 18 by means of inverse PCR. Three plant expression vectors were constructed for functional identification of the promoter. These vectors were different only in promoter regions; three truncations of the nodulinlike promoter took the place of the CaMV35S promoter in the pBI 121 plant expression vector. Then, the three vectors were introduced into cotton plants via the pollen tube pathway. The expression patterns of the gus gene driven by nodulin-like promoter truncations were investigated in the offspring of transgenic cotton plants. Histochemical GUS staining and fluorescence quantitative analysis were performed to achieve this goal. The results showed that the nodulin-like promoter was a strong, highly reproductive organspecific promoter, which demonstrated a much higher driver activity than the CaMV35S promoter did in cotton reproductive organs, but relatively lower activity in vegetation. Identification of the speciality and strength-determining regions of the nodulin-like promoter was also undertaken.