The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that t...The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased sharply when the temperature exceeded 100°C. In the absence of O_2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and Fe CO3 was the main corrosion product. When O_2 was introduced into the system, various forms of Fe_2O_3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O_2 was added; this phenomenon is related to the non-uniform distribution of Crin 3Cr.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51671215)the Science Foundation of China University of Petroleum, Beijing (No. LLYJ-2011-41)the Ph.D Basic Research Innovation Foundation of China University of Petroleum, Beijing (No. 2462016YXBS06)
文摘The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased sharply when the temperature exceeded 100°C. In the absence of O_2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and Fe CO3 was the main corrosion product. When O_2 was introduced into the system, various forms of Fe_2O_3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O_2 was added; this phenomenon is related to the non-uniform distribution of Crin 3Cr.