Pure drug-assembled nanomedicines(PDANs)are currently under intensive investigation as promising nanoplatforms for cancer therapy.However,poor colloidal stability and less tumor-homing ability remain critical unresolv...Pure drug-assembled nanomedicines(PDANs)are currently under intensive investigation as promising nanoplatforms for cancer therapy.However,poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation.Herein,we report a core-matched nanoassembly of pyropheophorbide a(PPa)for photodynamic therapy(PDT).Pure PPa molecules are found to self-assemble into nanoparticles(NPs),and an amphiphilic PEG polymer(PPaPEG_(2K))is utilized to achieve core-matched PEGylating modification via the p-p stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG_(2K) shell.Compared to PCL-PEG_(2K) with similar molecular weight,PPa-PEG_(2K) significantly increases the stability,prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly.As a result,PPa/PPa-PEG_(2K) NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model.Together,such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines.展开更多
Core-shell MoSi_(2)@Nb powder was prepared by electrostatic layer self-assembly method.The surfactants SDS(CHSO_(4)Na)and CTAB(C_(19)H_(42)BrN)were used to modify the surface of the two particles to make them charged,...Core-shell MoSi_(2)@Nb powder was prepared by electrostatic layer self-assembly method.The surfactants SDS(CHSO_(4)Na)and CTAB(C_(19)H_(42)BrN)were used to modify the surface of the two particles to make them charged,and the Zeta potential of the suspension was tested by the Zeta potentiometer.Scanning electron microscope,transmission electron microscope and energy dispersive spectrometer were used to characterize the phase,morphology,microstructure and element distribution of synthetic materials.The results show that when the SDS concentration is 2 mmol/L,the CTAB concentration is 3mmol/L and the pH value of Nb suspension is 5,the coating effect is better after secondary cladding.NbSi_(2)phase is found at the interface between Nb and MoSi_(2)after calcination at 200℃ for 2 h in Ar atmosphere,indicating that Nb is highly active and reacts with Si.Core-shell structure is still retained in MoSi_(2)@Nb material after spark plasma sintering at 1450℃ for 2 h under uniaxial pressure of 40 MPa.However,it is found that Nb reacts strongly with MoSi_(2),and most of the Nb phase is reacted.This issue needs to be addressed in subsequent studies.The fracture toughness(K_(IC))of MoSi_(2)@Nb material is significantly improved to 5.75 MPa·m^(0.5)compared with that of MoSi_(2)material(3.32 MPa·m^(0.5)).展开更多
The unique gut habitat led to a core intestinal micro-biome in diverse soil ecosystems.The collembolan guts may help eliminate soil pathogens.Host-selection carried more weight on community assembly of gut microbiome....The unique gut habitat led to a core intestinal micro-biome in diverse soil ecosystems.The collembolan guts may help eliminate soil pathogens.Host-selection carried more weight on community assembly of gut microbiome.Soil invertebrates are widely distributed in the ecosystem and are essential for soil ecological processes.Inverte-brate gut microbiome plays an important role in host health and has been considered as a hidden microbial repository.However,little is known about how gut microbiome in soil invertebrates respond to diverse soil ecosystems.Based on a laboratory microcosm experiment,we characterized the assembling of microbiome of soil collembolans(Folsomia candida)from six representative regions of the soil ecosystem which they inhabit.Results showed that collembolan gut microbial communities differed significantly from their surrounding soil microbial communities.A dominant core gut microbiome was identified in gut habitat.Community analyses indicated that deterministic process dominated in the community assembly of collembolan gut microbiome.The results further demonstrate a dominant contribution of host selection in shaping gut microbiome.It is also worthy to mention that pathogens,such as common agricultural phytopathogenic fungi Fusarium,were involved in core microbiome,indicating that collembolans could act as vectors of pathogens.Our results unravelled the existence of gut core microbiome of collembolans in soil ecosystems and provided new insights for under-standing the crucial role of gut microbiome of soil fauna in maintaining microbial biodiversity and stability of soil ecosystems.展开更多
Utilizing vacuum-tuned-atmosphere induced dip coating method,we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality.Coordinated modulating the ...Utilizing vacuum-tuned-atmosphere induced dip coating method,we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality.Coordinated modulating the vacuum degree,colloid concentration and evaporation atmosphere,Au@Ag core/shell nanocubes (NCs) can controllably assemble into diverse multi-dimensional superstructures.Under 0.08 MPa,we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width.In addition,we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa,which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins.Under 0.01 MPa,we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions.This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.展开更多
基金supported by Science and Technology Major Project of Liaoning(No.2019JH1/10300004,China)the National Natural Science Foundation of China(No.81773656 and 81703451)+2 种基金the Excellent Youth Science Foundation of Liaoning Province(No.2020-YQ-06,China)the China Postdoctoral Science Foundation(No.2020M670794)the Liaoning Revitalization Talents Program(No.XLYC1907129 and XLYC1808017,China)。
文摘Pure drug-assembled nanomedicines(PDANs)are currently under intensive investigation as promising nanoplatforms for cancer therapy.However,poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation.Herein,we report a core-matched nanoassembly of pyropheophorbide a(PPa)for photodynamic therapy(PDT).Pure PPa molecules are found to self-assemble into nanoparticles(NPs),and an amphiphilic PEG polymer(PPaPEG_(2K))is utilized to achieve core-matched PEGylating modification via the p-p stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG_(2K) shell.Compared to PCL-PEG_(2K) with similar molecular weight,PPa-PEG_(2K) significantly increases the stability,prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly.As a result,PPa/PPa-PEG_(2K) NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model.Together,such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines.
基金National Natural Science Foundation of China(51861026)The Graduate Innovation Special Fund of Nanchang Hangkong University(YC2022-011)。
文摘Core-shell MoSi_(2)@Nb powder was prepared by electrostatic layer self-assembly method.The surfactants SDS(CHSO_(4)Na)and CTAB(C_(19)H_(42)BrN)were used to modify the surface of the two particles to make them charged,and the Zeta potential of the suspension was tested by the Zeta potentiometer.Scanning electron microscope,transmission electron microscope and energy dispersive spectrometer were used to characterize the phase,morphology,microstructure and element distribution of synthetic materials.The results show that when the SDS concentration is 2 mmol/L,the CTAB concentration is 3mmol/L and the pH value of Nb suspension is 5,the coating effect is better after secondary cladding.NbSi_(2)phase is found at the interface between Nb and MoSi_(2)after calcination at 200℃ for 2 h in Ar atmosphere,indicating that Nb is highly active and reacts with Si.Core-shell structure is still retained in MoSi_(2)@Nb material after spark plasma sintering at 1450℃ for 2 h under uniaxial pressure of 40 MPa.However,it is found that Nb reacts strongly with MoSi_(2),and most of the Nb phase is reacted.This issue needs to be addressed in subsequent studies.The fracture toughness(K_(IC))of MoSi_(2)@Nb material is significantly improved to 5.75 MPa·m^(0.5)compared with that of MoSi_(2)material(3.32 MPa·m^(0.5)).
基金supported by the National Natural Science Foundation of China(No.42277102).
文摘The unique gut habitat led to a core intestinal micro-biome in diverse soil ecosystems.The collembolan guts may help eliminate soil pathogens.Host-selection carried more weight on community assembly of gut microbiome.Soil invertebrates are widely distributed in the ecosystem and are essential for soil ecological processes.Inverte-brate gut microbiome plays an important role in host health and has been considered as a hidden microbial repository.However,little is known about how gut microbiome in soil invertebrates respond to diverse soil ecosystems.Based on a laboratory microcosm experiment,we characterized the assembling of microbiome of soil collembolans(Folsomia candida)from six representative regions of the soil ecosystem which they inhabit.Results showed that collembolan gut microbial communities differed significantly from their surrounding soil microbial communities.A dominant core gut microbiome was identified in gut habitat.Community analyses indicated that deterministic process dominated in the community assembly of collembolan gut microbiome.The results further demonstrate a dominant contribution of host selection in shaping gut microbiome.It is also worthy to mention that pathogens,such as common agricultural phytopathogenic fungi Fusarium,were involved in core microbiome,indicating that collembolans could act as vectors of pathogens.Our results unravelled the existence of gut core microbiome of collembolans in soil ecosystems and provided new insights for under-standing the crucial role of gut microbiome of soil fauna in maintaining microbial biodiversity and stability of soil ecosystems.
基金the National Natural Science Foundation of China (Nos.51872030,51631001,21643003,51702016,and 51501010)Fundamental Research Funds for the Central Universities and Beijing Institute of Technology Research Fund Program for Young Scholars and ZDKT18-01 fund from State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology).We acknowledge critical and quantity of testing work supported by Beijing Zhongkebaice Technology Service Co., Ltd.
文摘Utilizing vacuum-tuned-atmosphere induced dip coating method,we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality.Coordinated modulating the vacuum degree,colloid concentration and evaporation atmosphere,Au@Ag core/shell nanocubes (NCs) can controllably assemble into diverse multi-dimensional superstructures.Under 0.08 MPa,we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width.In addition,we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa,which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins.Under 0.01 MPa,we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions.This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.