储能装置在平滑风电功率波动、提升风电消纳等方面具有重要的作用。目前常见的超级电容-蓄电池混合储能系统受制于成本因素而普遍容量较小,难以突破风电消纳瓶颈。为此引入深冷液化空气储能系统(cryogenic liquefied air energy storage...储能装置在平滑风电功率波动、提升风电消纳等方面具有重要的作用。目前常见的超级电容-蓄电池混合储能系统受制于成本因素而普遍容量较小,难以突破风电消纳瓶颈。为此引入深冷液化空气储能系统(cryogenic liquefied air energy storage,LAES),利用其容量大、成本低、不受地理环境限制的优势,有效提升系统风电消纳能力。首先,建立深冷液化空气储能系统压缩空气储能模块和膨胀发电模块数学模型;其次,提出基于深冷储能的风电消纳策略,根据深冷储能系统储能和释能环节动态响应特性,基于小波包分解理论对符合时间尺度要求的风电功率重新分配组合,并依托风电并网标准给出了计及风电并网波动抑制的深冷储能系统充放电策略。仿真结果验证了提出的基于深冷液化空气储能的风电消纳策略的有效性,为储能在风电消纳中的应用提供了新的思路。展开更多
To suppress the global environment pollutions, we tried to develop a new-type solar drying house by improving a typical agricultural green-house, so that an all weather-type solar drying house was invented ultimately....To suppress the global environment pollutions, we tried to develop a new-type solar drying house by improving a typical agricultural green-house, so that an all weather-type solar drying house was invented ultimately. This house is capable to dry raw wood materials (Ogako) into suitable moisture content (Mc) to make a wood pellet. The all weather-type solar Ogako drying house is covered with a triple transparent film, and an open/close free-type shield sheet is spread along with house’s inner surface with a small space, which is opened when solar radiation is incident on the house in daytime and closed to prevent heat loss from the house while out of sun shining in night. Inside of the all weather-type solar Ogako drying house, there are four belt-conveyors over which four top radiation panels are hanged, and on which four Ogako agitators are touched, a turn-table, two hoppers, four small fans, and besides, a floor heating is molded in concrete floor. Also on the north wall outside the house, two insulated cylinders (chimney) are stood up vertically to exhaust inside moist air passively. Then, to make clearly the operation performance of the house, the drying tests for the proof examination were conducted nineteen times at first test site in Ashoro where is located east-central part of Hokkaido, Japan. As a result of the drying test for the proof examination, it was made clear that the all weather-type solar Ogako drying house is practically useful as a supplementary apparatus to produce the dried Ogako, and consequently to suppress CO2 exhaustion.展开更多
文摘储能装置在平滑风电功率波动、提升风电消纳等方面具有重要的作用。目前常见的超级电容-蓄电池混合储能系统受制于成本因素而普遍容量较小,难以突破风电消纳瓶颈。为此引入深冷液化空气储能系统(cryogenic liquefied air energy storage,LAES),利用其容量大、成本低、不受地理环境限制的优势,有效提升系统风电消纳能力。首先,建立深冷液化空气储能系统压缩空气储能模块和膨胀发电模块数学模型;其次,提出基于深冷储能的风电消纳策略,根据深冷储能系统储能和释能环节动态响应特性,基于小波包分解理论对符合时间尺度要求的风电功率重新分配组合,并依托风电并网标准给出了计及风电并网波动抑制的深冷储能系统充放电策略。仿真结果验证了提出的基于深冷液化空气储能的风电消纳策略的有效性,为储能在风电消纳中的应用提供了新的思路。
文摘To suppress the global environment pollutions, we tried to develop a new-type solar drying house by improving a typical agricultural green-house, so that an all weather-type solar drying house was invented ultimately. This house is capable to dry raw wood materials (Ogako) into suitable moisture content (Mc) to make a wood pellet. The all weather-type solar Ogako drying house is covered with a triple transparent film, and an open/close free-type shield sheet is spread along with house’s inner surface with a small space, which is opened when solar radiation is incident on the house in daytime and closed to prevent heat loss from the house while out of sun shining in night. Inside of the all weather-type solar Ogako drying house, there are four belt-conveyors over which four top radiation panels are hanged, and on which four Ogako agitators are touched, a turn-table, two hoppers, four small fans, and besides, a floor heating is molded in concrete floor. Also on the north wall outside the house, two insulated cylinders (chimney) are stood up vertically to exhaust inside moist air passively. Then, to make clearly the operation performance of the house, the drying tests for the proof examination were conducted nineteen times at first test site in Ashoro where is located east-central part of Hokkaido, Japan. As a result of the drying test for the proof examination, it was made clear that the all weather-type solar Ogako drying house is practically useful as a supplementary apparatus to produce the dried Ogako, and consequently to suppress CO2 exhaustion.