车路协同系统(IVICS)是保障安全高效出行的新兴技术之一,将高精度车辆轨迹数据与机器学习方法相结合,提出一种可应用于IVICS的多车道交织区的潜在风险判别与冲突预测方法。首先,基于无人机视频,从广域视角提取交织区交通矢量位置、速度...车路协同系统(IVICS)是保障安全高效出行的新兴技术之一,将高精度车辆轨迹数据与机器学习方法相结合,提出一种可应用于IVICS的多车道交织区的潜在风险判别与冲突预测方法。首先,基于无人机视频,从广域视角提取交织区交通矢量位置、速度等信息,并划分上下游、交织影响区等多个分区;然后,考虑决策行为(车车边缘距离、接近率)与车辆行为(横纵向速度、加速度、速度角度)构建风险判别模型,以单位面积冲突次数、持续时间、冲突密度等指标评估风险;最后,基于朴素贝叶斯模型与logistic回归模型分别进行交通冲突预测,与实测数据相比,预测准确率分别为74.86%、87.10%,Area Under Curve分别为0.84、0.88,表明logistic回归模型具有更好的预测性能。研究成果有助于交管部门制定与优化交通管控方案,可应用于IVICS动态预警。展开更多
The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary...The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary for regional integration and high-quality development.This study focused on Nanjing Metropolitan Area,the first national metropolitan area in China,and established three development scenarios by combining ecological–economic spatial conflict(EESC)zones and national key ecological functional areas.These scenarios simulate the spatial distribution of future land use and land cover change(LUCC)using the development zone planning function of the patch generation land use simulation(PLUS)model.The results show that:(1)Between 2000 and 2020,the most prominent characteristics of land use change were largely the massive expansion of built-up land and the significant decline of farmland,while changes in the area of ecological land were less evident.(2)EESC areas experienced significant changes over the past 20 years,but the overall level of conflict was low.Ecological land was the main land use type in the lowest-conflict area,while built-up land was the main land use type in the highest-conflict area.(3)From 2030 to 2050,further expansion of built-up areas is expected,with continued decrease of farmland.The regulation of these land use changes can be achieved through different development zone plans.The economic development scenario had the largest built-up land area,while the ecological protection scenario had the largest farmland area.This study simulates the spatial pattern changes in the metropolitan area based on spatial conflict patterns and national main functional area planning process,providing a scientific reference for future spatial planning and management.展开更多
文摘车路协同系统(IVICS)是保障安全高效出行的新兴技术之一,将高精度车辆轨迹数据与机器学习方法相结合,提出一种可应用于IVICS的多车道交织区的潜在风险判别与冲突预测方法。首先,基于无人机视频,从广域视角提取交织区交通矢量位置、速度等信息,并划分上下游、交织影响区等多个分区;然后,考虑决策行为(车车边缘距离、接近率)与车辆行为(横纵向速度、加速度、速度角度)构建风险判别模型,以单位面积冲突次数、持续时间、冲突密度等指标评估风险;最后,基于朴素贝叶斯模型与logistic回归模型分别进行交通冲突预测,与实测数据相比,预测准确率分别为74.86%、87.10%,Area Under Curve分别为0.84、0.88,表明logistic回归模型具有更好的预测性能。研究成果有助于交管部门制定与优化交通管控方案,可应用于IVICS动态预警。
基金National Natural Science Foundation of China,No.42371185National Science Fund for Distinguished Young Scholars,No.41901151。
文摘The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary for regional integration and high-quality development.This study focused on Nanjing Metropolitan Area,the first national metropolitan area in China,and established three development scenarios by combining ecological–economic spatial conflict(EESC)zones and national key ecological functional areas.These scenarios simulate the spatial distribution of future land use and land cover change(LUCC)using the development zone planning function of the patch generation land use simulation(PLUS)model.The results show that:(1)Between 2000 and 2020,the most prominent characteristics of land use change were largely the massive expansion of built-up land and the significant decline of farmland,while changes in the area of ecological land were less evident.(2)EESC areas experienced significant changes over the past 20 years,but the overall level of conflict was low.Ecological land was the main land use type in the lowest-conflict area,while built-up land was the main land use type in the highest-conflict area.(3)From 2030 to 2050,further expansion of built-up areas is expected,with continued decrease of farmland.The regulation of these land use changes can be achieved through different development zone plans.The economic development scenario had the largest built-up land area,while the ecological protection scenario had the largest farmland area.This study simulates the spatial pattern changes in the metropolitan area based on spatial conflict patterns and national main functional area planning process,providing a scientific reference for future spatial planning and management.