军事命名实体(Military Named Entities,MNEs)内部嵌套关系复杂、语法区分不明显,从而影响实体识别效果,针对这一问题,提出了一种小粒度策略下基于条件随机场(Conditional Random Fields,CRFs)的MNEs识别方法。运用小粒度策略,结合手工...军事命名实体(Military Named Entities,MNEs)内部嵌套关系复杂、语法区分不明显,从而影响实体识别效果,针对这一问题,提出了一种小粒度策略下基于条件随机场(Conditional Random Fields,CRFs)的MNEs识别方法。运用小粒度策略,结合手工构建的MNEs标注语料进行建模,采用CRFs模型识别出不可再分的小粒度MNEs,再通过对小粒度MNEs进行组合得到完整的MNEs。最后,通过实验对该方法进行了验证,结果表明:在作战文书语料的开放测试中,MNEs识别的召回率达到72%以上,准确率达到85%以上。展开更多
针对"基于像素的条件随机场(conditional random fields,CRFs)模型能否在m级分辨率的多光谱遥感图像分类中表现良好"的问题,提出了集成图像的光谱、方向梯度直方图和多尺度多方向Texton纹理等多种线索的CRFs模型定义方法。利...针对"基于像素的条件随机场(conditional random fields,CRFs)模型能否在m级分辨率的多光谱遥感图像分类中表现良好"的问题,提出了集成图像的光谱、方向梯度直方图和多尺度多方向Texton纹理等多种线索的CRFs模型定义方法。利用上述特征,选择随机森林(random forests,RF)定义CRFs关联势函数;利用特征对比度加权的Potts函数定义CRFs交互势函数,并且建立了多标签的RF-CRFs模型;对该模型进行分项参数训练以及基于图割的α-膨胀算法推理;利用典型城区的Quick Bird多光谱图像进行模型的验证与精度评价。结果表明RF-CRFs模型的分类精度可达82.52%以上,比RF分类器的分类精度提高了3.35%。展开更多
文摘军事命名实体(Military Named Entities,MNEs)内部嵌套关系复杂、语法区分不明显,从而影响实体识别效果,针对这一问题,提出了一种小粒度策略下基于条件随机场(Conditional Random Fields,CRFs)的MNEs识别方法。运用小粒度策略,结合手工构建的MNEs标注语料进行建模,采用CRFs模型识别出不可再分的小粒度MNEs,再通过对小粒度MNEs进行组合得到完整的MNEs。最后,通过实验对该方法进行了验证,结果表明:在作战文书语料的开放测试中,MNEs识别的召回率达到72%以上,准确率达到85%以上。
文摘针对"基于像素的条件随机场(conditional random fields,CRFs)模型能否在m级分辨率的多光谱遥感图像分类中表现良好"的问题,提出了集成图像的光谱、方向梯度直方图和多尺度多方向Texton纹理等多种线索的CRFs模型定义方法。利用上述特征,选择随机森林(random forests,RF)定义CRFs关联势函数;利用特征对比度加权的Potts函数定义CRFs交互势函数,并且建立了多标签的RF-CRFs模型;对该模型进行分项参数训练以及基于图割的α-膨胀算法推理;利用典型城区的Quick Bird多光谱图像进行模型的验证与精度评价。结果表明RF-CRFs模型的分类精度可达82.52%以上,比RF分类器的分类精度提高了3.35%。