随着网络规模的不断扩大,传统社区发现算法已无法有效和高效地处理大规模网络数据.基于Spark分布式图计算模型,提出大规模复杂网络社区并行发现算法DBCS(Discovering Big Community on Spark).算法利用基于模块度的聚类思想,首先计算出...随着网络规模的不断扩大,传统社区发现算法已无法有效和高效地处理大规模网络数据.基于Spark分布式图计算模型,提出大规模复杂网络社区并行发现算法DBCS(Discovering Big Community on Spark).算法利用基于模块度的聚类思想,首先计算出节点对之间的模块度增量,然后迭代查找出所有模块度增量最大的节点对,对所有节点对进行合并操作,并更新节点对之间的模块度增量,进而实现大规模复杂网络社区识别.大量真实复杂网络与仿真网络数据集上的实验结果表明:DBCS算法能有效地解决传统社区发现算法无法处理的大规模复杂网络社区划分问题,百万级以上节点处理时间约为4min,是Hadoop平台下并行发现算法运行时间的1/20,社区识别准确率比传统社区发现算法提高了7.4%.展开更多
提出了一种基于带权图并行分解的层次化社区发现方法,该方法采用图划分的方式定义社区结构,并在这种社区结构之上实现了社会网络社区发现并行算法P-SNCD(parallel social network community discovery).P-SNCD算法有效地避免了传统的基...提出了一种基于带权图并行分解的层次化社区发现方法,该方法采用图划分的方式定义社区结构,并在这种社区结构之上实现了社会网络社区发现并行算法P-SNCD(parallel social network community discovery).P-SNCD算法有效地避免了传统的基于"模块度"的社区发现方法倾向于发现相似规模社区的弊端.同时,该算法能够以可扩展的方式,在处理器规模为O(hmn)或O(hn2)的条件下,以并行计算时间复杂度为O(logn)高效地挖掘大规模复杂社会网络中社区密度为h的社区,其中,n为社会网络节点数,m为边数,h为用户指定的任意社区密度.所提出的算法对用户参数输入要求简单,从而使得算法具有较强的实用性.充分的实验数据验证了所提出算法的精确性和高效性.展开更多
社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能...社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能出现的大量社区消亡或涌现等突发事件.为解决有效并高效地发现大规模动态社会网络的社区结构的问题,提出了一种基于邻域跟随关系的社区表示模型Follow-Community,模型刻画的社区由不同角色的节点以及节点间的跟随关系组成,通过发现节点间存在的直接或间接的跟随关系,可将跟随同一个节点的节点所构成的集合归为一个社区.基于该模型提出了一种具有接近线性时间复杂度的邻域跟随算法NFA(Neighborhood Following Algorithm),遍历网络节点一次即可得到静态社会网络的社区结构.进一步扩展得到增量邻域跟随算法iNFA(incremental Neighborhood Following Algorithm).通过更新网络演化过程中相关节点的邻域跟随关系,iNFA可发现动态社会网络的社区结构及社区演化.实验结果验证了算法在大规模动态社会网络社区发现方面具有精度、效率以及稳定性的优势.展开更多
文摘随着网络规模的不断扩大,传统社区发现算法已无法有效和高效地处理大规模网络数据.基于Spark分布式图计算模型,提出大规模复杂网络社区并行发现算法DBCS(Discovering Big Community on Spark).算法利用基于模块度的聚类思想,首先计算出节点对之间的模块度增量,然后迭代查找出所有模块度增量最大的节点对,对所有节点对进行合并操作,并更新节点对之间的模块度增量,进而实现大规模复杂网络社区识别.大量真实复杂网络与仿真网络数据集上的实验结果表明:DBCS算法能有效地解决传统社区发现算法无法处理的大规模复杂网络社区划分问题,百万级以上节点处理时间约为4min,是Hadoop平台下并行发现算法运行时间的1/20,社区识别准确率比传统社区发现算法提高了7.4%.
文摘提出了一种基于带权图并行分解的层次化社区发现方法,该方法采用图划分的方式定义社区结构,并在这种社区结构之上实现了社会网络社区发现并行算法P-SNCD(parallel social network community discovery).P-SNCD算法有效地避免了传统的基于"模块度"的社区发现方法倾向于发现相似规模社区的弊端.同时,该算法能够以可扩展的方式,在处理器规模为O(hmn)或O(hn2)的条件下,以并行计算时间复杂度为O(logn)高效地挖掘大规模复杂社会网络中社区密度为h的社区,其中,n为社会网络节点数,m为边数,h为用户指定的任意社区密度.所提出的算法对用户参数输入要求简单,从而使得算法具有较强的实用性.充分的实验数据验证了所提出算法的精确性和高效性.
文摘社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能出现的大量社区消亡或涌现等突发事件.为解决有效并高效地发现大规模动态社会网络的社区结构的问题,提出了一种基于邻域跟随关系的社区表示模型Follow-Community,模型刻画的社区由不同角色的节点以及节点间的跟随关系组成,通过发现节点间存在的直接或间接的跟随关系,可将跟随同一个节点的节点所构成的集合归为一个社区.基于该模型提出了一种具有接近线性时间复杂度的邻域跟随算法NFA(Neighborhood Following Algorithm),遍历网络节点一次即可得到静态社会网络的社区结构.进一步扩展得到增量邻域跟随算法iNFA(incremental Neighborhood Following Algorithm).通过更新网络演化过程中相关节点的邻域跟随关系,iNFA可发现动态社会网络的社区结构及社区演化.实验结果验证了算法在大规模动态社会网络社区发现方面具有精度、效率以及稳定性的优势.