Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation...Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation rate,coal particle size,dosage of collector,frother and conditioner were used as inputs to the network. Feed-forward artificial neural networks with 5-30-2-1 and 7-10-3-1 arrangements were capable to estimate the combustible value and combustible recovery of coal flotation concentrate respectively as the outputs. Quite satisfactory correlations of 1 and 0.91 in training and testing stages for combustible value and of 1 and 0.95 in training and testing stages for combustible recovery prediction were achieved. The proposed neural network models can be used to determine the most advantageous operational conditions for the expected concentrate assay and recovery in the coal flotation process.展开更多
A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds...A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.展开更多
In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous ...In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous cells in the micron order to improve the combustion performance by the supercritical carbon dioxide (SCeCO2) foaming technology. As the cell structure determined the combustion properties of microcellular combustible objects, the solubility of SCeCO2 dissolved into the combustible objects was obtained from the gravimetric method, and scanning electron microscope (SEM) was applied to characterize the cell structure under various process conditions of solubility, foaming temperature and foaming time. SEM images indicate that the cell diameter of microcellular combustible objects is in the level of 1 mm and the cell density is about 1011 cell,cm^-3. The microcellular combustible objects fabricated by the SCeCO2 foaming technology are smooth and uniform, and the high specific surface area of cell structure can lead to the significant combustion performance of microcellular combustible object for CTA in the future.展开更多
采用非等温差示扫描量热法研究纳米铝粉、纳米硼粉和纳米硅粉对六硝基六氮杂异伍兹烷(ε-CL-20)晶型转变的影响。通过测定3种纳米可燃剂与ε-CL-20混合物体系的晶型转变峰值温度,分别采用Kissinger法和Ozawa法计算其转晶反应的活化能和...采用非等温差示扫描量热法研究纳米铝粉、纳米硼粉和纳米硅粉对六硝基六氮杂异伍兹烷(ε-CL-20)晶型转变的影响。通过测定3种纳米可燃剂与ε-CL-20混合物体系的晶型转变峰值温度,分别采用Kissinger法和Ozawa法计算其转晶反应的活化能和指前因子,并根据Friedman无模型等转化率法得到的表观活化能随转化率的变化曲线分析得到其转晶机理。研究结果表明,加入纳米铝、硼和硅粉后,ε-CL-20的转晶反应峰值温度升高,活化能从253 k J/mol分别增大到1 259 k J/mol、571 k J/mol和978 k J/mol,纳米铝粉、硼粉和硅粉可以对ε-CL-20的转晶反应起到抑制作用,纳米硼改变了ε-CL-20的转晶反应机理。展开更多
文摘Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation rate,coal particle size,dosage of collector,frother and conditioner were used as inputs to the network. Feed-forward artificial neural networks with 5-30-2-1 and 7-10-3-1 arrangements were capable to estimate the combustible value and combustible recovery of coal flotation concentrate respectively as the outputs. Quite satisfactory correlations of 1 and 0.91 in training and testing stages for combustible value and of 1 and 0.95 in training and testing stages for combustible recovery prediction were achieved. The proposed neural network models can be used to determine the most advantageous operational conditions for the expected concentrate assay and recovery in the coal flotation process.
基金Sponsored by Young Fund Programs of Explosives&Propellants ( HYZ08010202-4)
文摘A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.
文摘In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous cells in the micron order to improve the combustion performance by the supercritical carbon dioxide (SCeCO2) foaming technology. As the cell structure determined the combustion properties of microcellular combustible objects, the solubility of SCeCO2 dissolved into the combustible objects was obtained from the gravimetric method, and scanning electron microscope (SEM) was applied to characterize the cell structure under various process conditions of solubility, foaming temperature and foaming time. SEM images indicate that the cell diameter of microcellular combustible objects is in the level of 1 mm and the cell density is about 1011 cell,cm^-3. The microcellular combustible objects fabricated by the SCeCO2 foaming technology are smooth and uniform, and the high specific surface area of cell structure can lead to the significant combustion performance of microcellular combustible object for CTA in the future.
文摘采用非等温差示扫描量热法研究纳米铝粉、纳米硼粉和纳米硅粉对六硝基六氮杂异伍兹烷(ε-CL-20)晶型转变的影响。通过测定3种纳米可燃剂与ε-CL-20混合物体系的晶型转变峰值温度,分别采用Kissinger法和Ozawa法计算其转晶反应的活化能和指前因子,并根据Friedman无模型等转化率法得到的表观活化能随转化率的变化曲线分析得到其转晶机理。研究结果表明,加入纳米铝、硼和硅粉后,ε-CL-20的转晶反应峰值温度升高,活化能从253 k J/mol分别增大到1 259 k J/mol、571 k J/mol和978 k J/mol,纳米铝粉、硼粉和硅粉可以对ε-CL-20的转晶反应起到抑制作用,纳米硼改变了ε-CL-20的转晶反应机理。