负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备...负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备储热装置的光热电站(Concentrated Solar Power,CSP)和电加热装置(Electric Heater,EH)协同热电联产机组(Combined Heat and Power,CHP)供热在一定程度上解耦其“以热定电”工作模式,网侧建立了稳态电热潮流,荷侧计及电热需求响应,模型的综合优化目标考虑了系统总运行成本、弃风惩罚成本及碳交易成本。基于改进的IEEE30电网与6节点热网系统对所建立模型进行仿真,算例结果表明源荷协调运行可有效降低系统总调度成本、提高风电并网发电量及减少系统碳排放量。展开更多
Large-scale wind power penetration can affect the supply continuity in the power system.This is a matter of high priority to investigate,as more regulating reserves and specified control strategies for generation cont...Large-scale wind power penetration can affect the supply continuity in the power system.This is a matter of high priority to investigate,as more regulating reserves and specified control strategies for generation control are required in the future power system with even more high wind power penetration.This paper evaluates the impact of large-scale wind power integration on future power systems.An active power balance control methodology is used for compensating the power imbalances between the demand and the generation in real time,caused by wind power forecast errors.The methodology for the balance power control of future power systems with large-scale wind power integration is described and exemplified considering the generation and power exchange capacities in2020 for Danish power system.展开更多
Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time w...Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance between generation and load demand. In addition, the active power balance is also controlled through automatic generation control, where coordinated control strategy between combined heat and power plants and wind power plant enhances the secure power system operation. The developed algorithm emulating the control room response,to deal with real-time power imbalance, is applied and investigated on the future Danish power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account.The real-time impact of power balancing in a highly wind power integrated power system is assessed and discussed by means of simulations for different possible scenarios.展开更多
基金supported in part by Program for New Century Excellent Talents in University(No.NCET-08-0489)Hong Kong Polytechnic University Grants(#ZZ7Qand#ZV3E)National High Technology Research and Development Program of China(No.2009AA05Z221)
文摘负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备储热装置的光热电站(Concentrated Solar Power,CSP)和电加热装置(Electric Heater,EH)协同热电联产机组(Combined Heat and Power,CHP)供热在一定程度上解耦其“以热定电”工作模式,网侧建立了稳态电热潮流,荷侧计及电热需求响应,模型的综合优化目标考虑了系统总运行成本、弃风惩罚成本及碳交易成本。基于改进的IEEE30电网与6节点热网系统对所建立模型进行仿真,算例结果表明源荷协调运行可有效降低系统总调度成本、提高风电并网发电量及减少系统碳排放量。
基金funded by Sino-Danish Centre for Education and Research (SDC)
文摘Large-scale wind power penetration can affect the supply continuity in the power system.This is a matter of high priority to investigate,as more regulating reserves and specified control strategies for generation control are required in the future power system with even more high wind power penetration.This paper evaluates the impact of large-scale wind power integration on future power systems.An active power balance control methodology is used for compensating the power imbalances between the demand and the generation in real time,caused by wind power forecast errors.The methodology for the balance power control of future power systems with large-scale wind power integration is described and exemplified considering the generation and power exchange capacities in2020 for Danish power system.
基金a part of Ph.D.project funded by Sino-Danish centre for education and research(SDC)
文摘Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance between generation and load demand. In addition, the active power balance is also controlled through automatic generation control, where coordinated control strategy between combined heat and power plants and wind power plant enhances the secure power system operation. The developed algorithm emulating the control room response,to deal with real-time power imbalance, is applied and investigated on the future Danish power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account.The real-time impact of power balancing in a highly wind power integrated power system is assessed and discussed by means of simulations for different possible scenarios.