期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
TFIDF_-NB协同训练算法
被引量:
1
1
作者
彭雅
林亚平
陈治平
《小型微型计算机系统》
CSCD
北大核心
2004年第12期2243-2246,共4页
采用少量已标记和大量未标记文档进行文本分类已成为一种重要研究趋势 .在分析了 EM和联合训练 (Co-training)两类算法的基础上 ,提出一种新的协同训练算法 .该算法利用 Bayes和 TFIDF两种分类器结合少量已标记和大量未标记文档协同增...
采用少量已标记和大量未标记文档进行文本分类已成为一种重要研究趋势 .在分析了 EM和联合训练 (Co-training)两类算法的基础上 ,提出一种新的协同训练算法 .该算法利用 Bayes和 TFIDF两种分类器结合少量已标记和大量未标记文档协同增量训练 .实验结果表明 ,协同训练算法正确率较高 ,平均错误率较 EM和联合训练低 。
展开更多
关键词
文本分类
半监督算法
联合训练算法
EM算法
协同增量训练
下载PDF
职称材料
题名
TFIDF_-NB协同训练算法
被引量:
1
1
作者
彭雅
林亚平
陈治平
机构
湖南大学计算机与通信学院
出处
《小型微型计算机系统》
CSCD
北大核心
2004年第12期2243-2246,共4页
基金
国家自然科学基金 ( 60 2 72 0 5 1)资助
文摘
采用少量已标记和大量未标记文档进行文本分类已成为一种重要研究趋势 .在分析了 EM和联合训练 (Co-training)两类算法的基础上 ,提出一种新的协同训练算法 .该算法利用 Bayes和 TFIDF两种分类器结合少量已标记和大量未标记文档协同增量训练 .实验结果表明 ,协同训练算法正确率较高 ,平均错误率较 EM和联合训练低 。
关键词
文本分类
半监督算法
联合训练算法
EM算法
协同增量训练
Keywords
text
classification
semi
supervise
algorithm
co
-
training
algorithm
EM
algorithm
co
-
operative
training
incrementally
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
TFIDF_-NB协同训练算法
彭雅
林亚平
陈治平
《小型微型计算机系统》
CSCD
北大核心
2004
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部